
NKS 2004

CA and Intermediate Degrees

Klaus Sutner

Carnegie Mellon University

www.cs.cmu.edu/~sutner
sutner@cs.cmu.edu



NKS’04 1

Overview

• Classical Complexity and

Post’s Problem

• Intermediate Turing Degrees

• Orbits of Cellular Automata

• The Reversible Case

• Some Questions



NKS’04 2

Entscheidungsproblem

The Entscheidungsproblem is solved when one knows a procedure by which

one can decide in a finite number of operations whether a given logical expression

is generally valid or is satisfiable. The solution of the Entscheidungsproblem is of

fundamental importance for the theory of all fields, the theorems of which are at all

capable of logical development from finitely many axioms.

D. Hilbert, W. Ackermann

Grundzüge der theoretischen Logik, 1928

In modern terminology: find a decision algorithm for statements of mathematics (or at

least arithmetic, group theory, topology, . . . ).



NKS’04 3

Alas . . .

Theorem. (Church, Turing)

Mathematics is undecidable.

In fact, even rather small fragments of mathematics turn out to undecidable. For example,

Theorem. Novikov, Boone, Adyan, Rabin, . . .

The Entscheidungsproblem is not solvable for group theory

Theorem. Y. Matiyasevic, 1970

It is undecidable whether a Diophantine equation has an integer solution.



NKS’04 4

No (Computable) Bounds

As a mild example, try to find a solution in positive integers for the quadratic equation

x
2 − 991y

2 − 1 = 0.

The smallest positive solution here is

x = 379516400906811930638014896080

y = 12055735790331359447442538767

Much harder is

313(x
3

+ y
3
) = z

3



NKS’04 5

Semi-Decidability

A semi-algorithm for A is a procedure which, given any input x:

• halts after finitely many steps if x ∈ A, and

• runs forever otherwise.

A is then semi-decidable.

A priori it is not clear that there are semi-decidable sets that fail to be decidable (though

undecidable sets must exist by a cardinality argument).

Theorem. Turing

The Halting Set K is semi-decidable but fails to be decidable.



NKS’04 6

Semi-Decidable Sets

The decidable sets are exactly the complemented elements of the lattice of semi-decidable

sets.

Lemma. A is decidable if, and only if, both A and its complement are semi-decidable.

There are countless examples of semi-decidable sets in mathematics and CS.

Lemma. Diophantine Equations are semi-decidable (unbounded search).

Lemma. The theorems of any axiomatizable theory are semi-decidable.



NKS’04 7

Comparing Difficulty

Since there are at least two types of semi-decidable sets, how do we compare the complexity

of two (semi-decidable) sets A and B?

The basic idea is simple:

Problem A is easier than B if we could use B as an oracle (a subroutine that answers

membership questions about B) to construct an algorithm for A.

A is Turing-reducible to B (A ≤T B) if there is a decision algorithm for A given an

oracle for B.

A and B are Turing-equivalent (A ≡T B) if A ≤T B and B ≤T A.



NKS’04 8

Completeness

So we have a natural pre-order on the semi-decidable sets.

0 = decidable

1 = ????

Is there a semi-decidable set that contains as much information as any semi-decidable set?

More formally, C is complete semi-decidable if

∀A semi-decidable (A ≤T C)

Note: C itself must be semi-decidable, otherwise this is easy (take the disjoint union of all

semi-decidable sets).



NKS’04 9

The World of Semi-Decidability

Theorem. The Halting Set K is complete semi-decidable.

semi-decidable

decidable

K



NKS’04 10

Universality

The key ingredient for complete problems in universality: there are Turing machines that

are capable of simulating every possible Turing machines.

Fairly unexiting today, every PC is a universal computer in this sense (disregarding resource

bounds).

Real proof requires quite a bit of coding machinery.



NKS’04 11

Universality

Many simple systems are known that can perform universal computations and give rise to

complete problems.

• Alonzo Church, λ calculus, 1931.

• Emil Post, production systems, 1943.

• Newell, Simon, and Shaw, IPL-1, 1956.

• John McCarthy, LISP, 1959.

• Davis, Putnam and Robinson, exponential Diophantine

equations, 1961.

• Marvin Minsky, two-counter machine, 1961.

• John Conway, “Game of Life”, 1970.

• Edwin Bank, 4-state CA, 1971.

• Wolfram, Cook, ECA rule 110.



NKS’04 12

An Empirical 0/1-Law

Any natural semi-decidable set is either decidable or Turing-equivalent to the Halting

problem. In other words, the yellow area appears to be empty.

There are analogues of this in computational complexity theory: For example, every (more

or less) natural set in NP is either in P or NP-complete.

However, unlike with unconstrained computability, it seems extremely difficult to prove

that P 6= NP.

It might be the case that P = NP so the distinction disappears.



NKS’04 13

Post’s Problem

Are there any intermediate semi-decidable sets?

I.e., is there a semi-decidable set A such that

∅ <T A <T K

Theorem. Friedberg, Muchnik 1956/7

There are intermediate semi-decidable sets.

Construction quite complicated and very different from previously known methods, so-called

priority argument.



NKS’04 14

Tip of the Iceberg

Theorem. Sack’s Density Theorem

Given semi-decidable sets A <T B there is another semi-decidable set C such that

A <T C <T B.

The Turing degrees of all semi-decidable sets form a semi-lattice D (meet is partial). Has

a very rich and fairly well-understood structure.

Theorem. Harrington, Shelah, Slaman

The Entscheidungsproblem for D is highly undecidable (it has degree ∅(ω)).



NKS’04 15

So How About Cellular Automata?

• How do we measure the computational complexity of a CA?

• What does a CA naturally compute?

• How does it perform (universal) computations?

The standard answer is to simulate a classical machine by a cellular automaton via some

I/O coding conventions.

But a CA really is a discrete dynamical system, so unlike with Turing machines, Minsky

machines, RAMs, etc. there is no simple notion of halting or input/output behavior.

Is there some intrinsic property that pinpoints the computational power of a CA?



NKS’04 16

Defining Universality

M. Davis proposes an answer to the question: what is a good definition for a universal

Turing machine?

In “Automata Studies”, 1956, eds. J. McCarthy and C. Shannon.

Good here means: using intrinsic properties, but not involving any arbitrary coding conven-

tions.

A Turing machine M is computationally universal (Davis-universal) if the set IDfin of

instantaneous descriptions of the Turing machine that gives rise to finite (ultimately

halting) computations has the same Turing degree as K.

Note that IDfin is always semi-decidable, so in a Davis-universal TM IDfin is as complicated

as possible.



NKS’04 17

Observations

• Every I/O universal machine is Davis-universal.

• However, some Davis-universal machines are not I/O universal: simply erase

the tape and write 0.

• One can compute arbitrary partial recursive functions with IDfin as oracle.

Multiple queries to test whether {e} (x) ↓ and to find the right y exploiting

the fact that IDfin is complete.

• The mediating functions are very simple.

• Fundamental tension between transducers and acceptors.



NKS’04 18

Davis Stability

Theorem. Davis

Every total recursive function can be computed by a stable Turing machine: all instantaneous

descriptions yield finite computations.

Hence every total recursive function can be computed by a highly non-universal machine

(IDfin = ID).

Technical point: Uses a normal form for total recursive functions. Alternatively, one can

modify the Turing machine directly (slightly more general).

Interesting for CA classification: need to deal with all configurations, not just some

specially constructed ones.



NKS’04 19

Classifying CA

At any rate, this suggests to consider the orbits of all finite configurations as a measure of

complexity of a CA.

Orbρ = { (X,Y )
∣

∣ Y = ρt(X), t ≥ 0 }

Suppose A is a semi-decidable set and define the class of all CA of complexity A

CA = { ρ
∣

∣ Orbρ ≡T A }

Note that the Wolfram-Culik-Yu classes 1 and 2 are properly contained in class 3, which is

none other than C∅.



NKS’04 20

Non-Triviality

Theorem.

For any semi-decidable set A the class CA is not empty.

The structure of D is inherited by cellular automata.

Proof uses a kind of “super-stable” cellular automaton to simulate a stable Turing machine

that semi-decides membership in A.

The hard part here is to get the upper bound: the CA knows nothing about well-formed

input configurations, it has to work on all (finite) configurations.



NKS’04 21

Classification is Hard

Theorem.

Decidability is very hard to check: class C∅ is Σ3-complete.

Universality is even harder: class CK is Σ4-complete.

Very interesting to find some sufficient criteria for computational universality (see

Wolfram-Cook proof for rule 110).

Perhaps some kind of particle mechanism combined with local interactions?

Sufficient criteria for decidability are probably even harder (if interesting):

Pinning down complexity is more difficult that pushing it up.



NKS’04 22

Reversibility

The evolution of a configuration on a cellular automaton is usually associated with a loss

of information: X cannot be recovered from ρ(X).

In other words, the global maps are not injective.

Incidentally, for global maps injective implies surjective.

Can we combine reversibility with computation?



NKS’04 23

Reversible Computation

Theorem. Lecerf, Bennett

Any Turing machine can be simulated by a reversible Turing machine.

Compute ̂f(x) = 〈f(x), x〉 for any partial recursive function f .

Theorem. Morita, Harao

Any reversible Turing machine can be simulated by a reversible cellular automaton.

Bennett, Morita, Harao results refer to the input/output behavior of the machines.

But Lecerf actually focuses on orbits. Again, transducers versus acceptors.



NKS’04 24

Degrees of Reversible CA

Theorem. For any semi-decidable set A there is a reversible CA in class CA. Thus, the

orbits of a reversible CA can have arbitrary semi-decidable Turing degree.

Proof again uses a kind of super-stable cellular automaton to simulate a stable Turing

machine that semi-decides membership in A. Moreover, the CA uses the Morita/Harao

machinery to insure reversibility.



NKS’04 25

Some Ruminations

• What is the relationship between classical I/O universality and Davis-universality

for CAs?

• Rule 110 is universal in the classical sense. Are there simple rules that are universal

only in the sense of Davis?

• How does this relate to PCE? Is there any hope to formalize the notion of

information hiding?

• The degree result for reversible CA uses finite configurations, can this be pushed to

more general cases?

• What is the role of intrinsic universality, in particular in conjunction with

reversibility?

• What is the right computation theory to deal with CA? Classical RT or generalized

RT?



NKS’04 26

A Wild Speculation

Recent work by Simpson suggests that natural examples of intermediate degrees can be

found if one adopts a different notion of reduction (Muchnik degrees). One of the natural

examples is based on randomness.

So how about rule 30?


