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Modern microprocessors are highly complex...

Moore’s Law:
Exponential increase of the
number of transistors/processor

Pentium 4 (42 million transist.)

Itanium 2 (410 million transist.)

A huge quantity of elements,
with complex interactions
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...to increase performance

Performance = execution speed of a program

Varies along execution
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understanding/predicting how to increase microprocessor efficiency

Our approach:
use methods from nonlinear time series analysis
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Measurements

Execution of typical programs (SPEC benchmarks) by a typical
modern superscalar processor (e.g. Pentium 4).

Simultaneous measurements during execution:

number of instructions executed
during a clock cycle: ipc

miss fraction in L1 cache: L1

miss fraction in L2 cache: L2

L1 & L2 miss rate = indices for memory usage efficiency (vanishing indices
denote highest efficiency)
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Example 1. applu

(Nonlinear PDEs solver for fluid dyamics)



applu: General aspect



applu: Details

1.8

1.6

1.4

1.2

1.0

0.8

0.6

ip
c

504948474645
 Billion Instructions

0.5

0.4

0.3

0.2

0.1

0.0

L
2

0.25

0.20

0.15

0.10

0.05

0.00

L
1

REGULAR, PERIODIC DYNAMICS (limit cycle).

Also found for e.g. apsi (Pollutants air dispersion)



applu: Details

1.8

1.6

1.4

1.2

1.0

0.8

0.6

ip
c

504948474645
 Billion Instructions

0.5

0.4

0.3

0.2

0.1

0.0

L
2

0.25

0.20

0.15

0.10

0.05

0.00

L
1

REGULAR, PERIODIC DYNAMICS (limit cycle).

Also found for e.g. apsi (Pollutants air dispersion)



Example 2. bzip2

(File compression)



bzip2: General aspect

2 different phases



bzip2: Details
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bzip2: Phase plan projections
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Attractor reconstruction: Principle

Aim: construct the attractor underlying the dynamics from a
single scalar time series.

Delay embedding:
xk =⇒ Xk =

(
xk,xk+τ, . . . ,xk+(m−1)τ

)
eg. m = 3, τ = 4

For adequately chosen m and τ, the reconstructed (embedded)
attractor is (topologically) equivalent to the real dynamics
attractor [Takens (1981) Lecture Notes Math. 898:366]



Attractor reconstruction: Principle

Aim: construct the attractor underlying the dynamics from a
single scalar time series.
Delay embedding:

xk =⇒ Xk =
(
xk,xk+τ, . . . ,xk+(m−1)τ

)
eg. m = 3, τ = 4

For adequately chosen m and τ, the reconstructed (embedded)
attractor is (topologically) equivalent to the real dynamics
attractor [Takens (1981) Lecture Notes Math. 898:366]



Attractor reconstruction: Principle

Aim: construct the attractor underlying the dynamics from a
single scalar time series.
Delay embedding:

xk =⇒ Xk =
(
xk,xk+τ, . . . ,xk+(m−1)τ

)
eg. m = 3, τ = 4

For adequately chosen m and τ, the reconstructed (embedded)
attractor is (topologically) equivalent to the real dynamics
attractor [Takens (1981) Lecture Notes Math. 898:366]



Attractor dimension: Principle

[Grassberger & Procaccia (1983) Physica D 9:189]

Compute “Correlation sums”:

C(m,ε)=
2

p(p−1)

n

∑
i=1

n

∑
j>i

Θ(ε− ‖ Xi−Xj ‖)

If a strange attractor is present: C(m,ε) ∝ εD2 for m >> D2.
D2 = (fractal) correlation dimension
⇒ scaling of C(m,ε) = independent of m

Whereas, for a stochastic (random) time series: C(m,ε) ∝ εm

⇒ scaling of C(m,ε) = depends on m
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bzip2: Attractor dimension
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bzip2: Sensitivity to initial conditions

Compute “stretching factors” [Kantz (1994) Phys. Lett. A 185:177]
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1
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‖ Xi+t−Xj+t ‖∝ exp(λmaxt)⇒ S (ε,m, t) ∝ λmaxt
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Conclusion

bzip2:

Seems to result from chaotic dynamics

λmax ≈ 0.65 bit/average “orbit”

Comparable to textbook chaotic models (e.g. Rössler,
λmax = 0.78 bits/orbit).

Time series very difficult to predict.

Similar behavior observed for galgel (Fluid dynamics) or fma3d
(Finite elements for mechanics)
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Example 3. vpr

(Node placements and routing in networks)



vpr: General aspect

Very irregular



vpr: Details
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vpr: Phase plan projection
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vpr: Attractor dimension
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Conclusion

vpr:

Seems to originate from a non deterministic time series

However, the underlying processes in the microprocessor are
fundamentally deterministic

How to discriminate stochastic/deterministic with long repetition
period?

Similar behaviors observed for art (Neural networks) or crafty
(Chess game)
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Example (from NKS p.129)
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To conclude



Three dynamics types observed

Regular periodicity

Deterministic chaos

Non chaotic, “stochastic-like” behaviors

Dynamics type of a program 6= correlated to simple
characteristics (e.g. floating-point vs integer-based codes...)
but rather to how microprocessor architecture (memory
hierarchy, branch predictors...) is used by the program.

For further information/analysis:

Berry, Gracia Pérez & Temam (2006) CHAOS 16:013110
(arXiv:nlin.AO/0506030)
www-rocq.inria.fr/˜berry
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Why this complexity?



Hiding memory latency

The increase rate of the clock frequency is much larger than that
of memory accesses

The latency for memory access is thus always larger (currently,
hundreds of cycles for RAM access)

A myriad of mechanisms has been developed to “hide” this
caveat and increase performance:

Cache memory hierarchies (data and
instructions)

Parallelization at various levels

Pipelining

Speculative execution

...

Increase of the complexity
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Example: speculative execution

Example

if (X==0)
{ A }

else
{ B }

C

speculative
execution (branch
predictor).

If prediction = true:
the memory
latency time has
been skipped

If not: forget
speculative
execution results Performance can be history-dependent
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So that:

Performance (number of instructions executed per time units) at a given
point depends on a huge quantity of architectural mechanisms,
that interact in a nonlinear fashion.

The state of each of these mechanisms at a given point cannot
be known precisely.

This property has been exploited to build random number
generators (Seznec & Sandrier, 2003).



Supplementary results for applu



applu: Phase plan projection

Clear regular periodicity (limit cycle)

PERIODICAL PERFORMANCE OSCILLATIONS.
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applu: Spectral analysis
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Supplementary results for bzip2



bzip2: Spectral Analysis
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bzip2: Spectral Analysis (2)
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bzip2: Spectral Analysis (2)
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Detrended Fluctuation Analysis: Principle
Principle [Peng et al. (1995) CHAOS 5:82 ]:

Centering and integration: yk = ∑
k
i=1 [xi−〈x〉]

The series is then cut in segments of size n instructions

Fluctuations around the linear tendency:

F(n) =

√
1
N

N

∑
k=1

[yk − ȳk]2

For “fractal” time series: F(n) ∝ nα

α = 0.5: no correlation;
α > 0.5: “Fractal” time series with long term correlations;
Theoretically, α = (1+β)/2 [Rangarajan & Ding (2000) PRE 61:4991 ].
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bzip2: DFA
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Recurrence plots (RPs): Principle

Thresholded RPs: [Eckmann et al. (1987) Europhysics Lett. 5:973]

Qualitative tests for the presence of patterns and nonlinearity in
time series

Build the distance matrix between each pair of points in the
embedded attractor, then threshold the distance:

Ri, j = Θ
(
ξ− ‖ Xi−Xj ‖

)
i, j = 1, . . . , p

where Θ(· · ·): Heaviside step function

Qualitative graphical interpretation:

Diagonals: determinism

Isolated points: stochasticity

Interrupted diagonals + isolated points: chaos



Examples of RPs

Lorenz attractor



Examples of RPs

Gaussian (white) noise



bzip2: RPs

Scalar series: ipc; Embedding w/ m = 5 and τ = 0.14×109

instructions.
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bzip2: Poincaré sections

Poincaré sections (at minima):
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bzip2: Surrogate data tests

Surrogates have same Fourrier amplitudes and value distribution as real data.

Nonlinearity tested using a simple nonlinearity predictor and time reversal assymetry statistics.
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Possibility that the IPC trace is due to a stationary, possibly rescaled,
linear Gaussian random process is be rejected at the 95 % level of
significance

Same conclusion raised when applied to isolated bzip2 regions



Supplementary results for vpr



vpr: RPs

Series: ipc; Embedding w/ m = 4 and τ = 4.16×109 instructions.

Low determinism
(lowly structured)

Close to what is
expected for a white
noise

Non chaotic series. But stochastic?
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vpr: RPs

Series: ipc; Embedding w/ m = 4 and τ = 4.16×109 instructions.

Low determinism
(lowly structured)

Close to what is
expected for a white
noise

Non chaotic series. But stochastic?



vpr: Poincaré sections

Poincaré sections (at minima):
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vpr: Spectral Analysis + DFA
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Bad linear regression, but α ≈ 0.86 (compare w/ (1+β)/2 = 0.93)

vpr could also be “fractal”



vpr: Surrogate data tests

Surrogates have same Fourrier amplitudes and value distribution as real data.

Nonlinearity tested using a simple nonlinearity predictor and time reversal assymetry statistics.
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The null hypothesis that the IPC trace is due to a stationary, possibly
rescaled, linear Gaussian random process could not be rejected (95 %
level of significance)

Another point in favor of a stochastic process



Delay embedding of strange attractors



An example of attractor embedding: Lorenz

Ẋ = σ(Y −X) Ẏ =−XZ + rX −Y Ż = XY −bZ

Topology conserved w/ m = 3, τ = 0.05
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