Complex Dynamics of Microprocessor Performances During Program Execution

Regularity, Chaos, and Others

Hugues BERRY, Daniel GRACIA PÉREZ, Olivier TEMAM

Alchemy, INRIA, Orsay, France www-rocq.inria.fr/~berry/

NKS 2006 Conference, Washington, D.C., June 18th, 2006

Modern microprocessors are highly complex...

• Moore's Law:

Exponential increase of the number of transistors/processor

Transistors

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Modern microprocessors are highly complex...

• Moore's Law:

Exponential increase of the number of transistors/processor

- Pentium 4 (42 million transist.)
- Itanium 2 (410 million transist.)
- A huge quantity of elements, with complex interactions

Transistors

...to increase performance

• Performance = execution speed of a program

...to increase performance

- Performance = execution speed of a program
- Varies along execution

How to quantify/characterize this dynamics? = crucial for understanding/predicting how to increase microprocessor efficiency

...to increase performance

- Performance = execution speed of a program
- Varies along execution

 How to quantify/characterize this dynamics? = crucial for understanding/predicting how to increase microprocessor efficiency

Our approach: use methods from nonlinear time series analysis

• □ ▶ • • □ ▶ • • □

• Execution of typical programs (SPEC benchmarks) by a typical modern superscalar processor (e.g. Pentium 4).

• Execution of typical programs (SPEC benchmarks) by a typical modern superscalar processor (e.g. Pentium 4).

L1 & L2 miss rate = indices for memory usage efficiency (vanishing indices denote highest efficiency)

Example 1. applu

(Nonlinear PDEs solver for fluid dyamics)

applu: General aspect

applu: Details

REGULAR, PERIODIC DYNAMICS (limit cycle).

applu: Details

• REGULAR, PERIODIC DYNAMICS (limit cycle).

Also found for e.g. apsi (Pollutants air dispersion)

▲ロト ▲掃 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ● のへで

Example 2. bzip2

(File compression)

<

・

590

-

bzip2: General aspect

• 2 different phases

• Partly regular but much variability / aperiodicity

bzip2: Phase plan projections

• A clear "structure" (attractor?)

Attractor reconstruction: Principle

• Aim: construct the attractor underlying the dynamics from a single scalar time series.

Attractor reconstruction: Principle

- Aim: construct the attractor underlying the dynamics from a single scalar time series.
- Delay embedding:

$$x_k \Longrightarrow \mathbf{X}_{\mathbf{k}} = (x_k, x_{k+\tau}, \dots, x_{k+(m-1)\tau})$$

Attractor reconstruction: Principle

- Aim: construct the attractor underlying the dynamics from a single scalar time series.
- Delay embedding:

$$x_k \Longrightarrow \mathbf{X}_{\mathbf{k}} = (x_k, x_{k+\tau}, \dots, x_{k+(m-1)\tau})$$

eg. $m = 3, \tau = 4$ X_{k} (x_0, x_4, x_8) k x_1, x_5, x_9 x_{I}

• For adequately chosen m and τ , the reconstructed (embedded) attractor is (topologically) equivalent to the real dynamics attractor [Takens (1981) Lecture Notes Math. 898:366]

Attractor dimension: Principle

[Grassberger & Procaccia (1983) Physica D 9:189]

• Compute "Correlation sums":

$$C(m, \varepsilon) = \frac{2}{p(p-1)} \sum_{i=1}^{n} \sum_{j>i}^{n} \Theta(\varepsilon - || \mathbf{X}_{i} - \mathbf{X}_{j} ||)$$

• If a strange attractor is present: $C(m, \varepsilon) \propto \varepsilon^{D_2}$ for $m >> D_2$.

- $D_2 = (\text{fractal}) \text{ correlation dimension}$
- \Rightarrow scaling of $C(m, \varepsilon)$ = independent of m

Attractor dimension: Principle

[Grassberger & Procaccia (1983) Physica D 9:189]

• Compute "Correlation sums":

$$C(m,\varepsilon) = \frac{2}{p(p-1)} \sum_{i=1}^{n} \sum_{j>i}^{n} \Theta(\varepsilon - \| \mathbf{X}_{i} - \mathbf{X}_{j} \|)$$

• If a strange attractor is present: $C(m, \varepsilon) \propto \varepsilon^{D_2}$ for $m >> D_2$.

- $D_2 = (\text{fractal}) \text{ correlation dimension}$
- \Rightarrow scaling of $C(m, \varepsilon)$ = independent of m
- Whereas, for a stochastic (random) time series: $C(m, \varepsilon) \propto \varepsilon^m$
 - \Rightarrow scaling of $C(m, \varepsilon)$ = depends on m

bzip2: Attractor dimension

- Presence of a clear scaling zone (where $C(m, \varepsilon) \propto \varepsilon^{\text{Const}}$)
- Indicates the presence of a strange attractor (i.e. low dimensional deterministic chaos).

bzip2: Sensitivity to initial conditions

Compute "stretching factors" [Kantz (1994) Phys. Lett. A 185:177]

$$S(\varepsilon, m, t) = \left\langle \ln \left(\frac{1}{p_i} \sum_{\mathbf{X}_{\mathbf{j}} \in \mathcal{U}_i} \| \mathbf{X}_{\mathbf{i}+\mathbf{t}} - \mathbf{X}_{\mathbf{j}+\mathbf{t}} \| \right) \right\rangle$$

$$\| \mathbf{X}_{\mathbf{i}+\mathbf{t}} - \mathbf{X}_{\mathbf{j}+\mathbf{t}} \| \propto \exp(\lambda_{max}t) \Rightarrow S(\varepsilon, m, t) \propto \lambda_{max}t$$

∢母▶ ∢ ≧▶

∢ ⊒ ▶

bzip2: Sensitivity to initial conditions

Compute "stretching factors" [Kantz (1994) Phys. Lett. A 185:177]

$$S(\varepsilon, m, t) = \left\langle \ln \left(\frac{1}{p_i} \sum_{\mathbf{X}_{\mathbf{j}} \in \mathcal{U}_i} \| \mathbf{X}_{\mathbf{i}+\mathbf{t}} - \mathbf{X}_{\mathbf{j}+\mathbf{t}} \| \right) \right\rangle$$

$$\| \mathbf{X}_{\mathbf{i}+\mathbf{t}} - \mathbf{X}_{\mathbf{i}+\mathbf{t}} \| \propto \exp(\lambda_{max}t) \Rightarrow S(\varepsilon, m, t) \propto \lambda_{max}t$$

- Presence of sensitivity to initial conditions $(\lambda_{max} > 0)$
- Another strong element in favor of a chaotic dynamics for bzip2

< 口 > < 同

bzip2: Seems to result from chaotic dynamics

bzip2:

- Seems to result from chaotic dynamics
- $\lambda_{max} \approx 0.65$ bit/average "orbit"
- Comparable to textbook chaotic models (e.g. Rössler, $\lambda_{max} = 0.78$ bits/orbit).

bzip2:

- Seems to result from chaotic dynamics
- $\lambda_{max} \approx 0.65$ bit/average "orbit"
- Comparable to textbook chaotic models (e.g. Rössler, $\lambda_{max} = 0.78$ bits/orbit).
- Time series very difficult to predict.

bzip2:

- Seems to result from chaotic dynamics
- $\lambda_{max} \approx 0.65$ bit/average "orbit"
- Comparable to textbook chaotic models (e.g. Rössler, $\lambda_{max} = 0.78$ bits/orbit).
- Time series very difficult to predict.
- Similar behavior observed for galgel (Fluid dynamics) or fma3d (Finite elements for mechanics)

Example 3. vpr

(Node placements and routing in networks)

vpr: General aspect

• Very irregular

vpr: Details

Irregularity confirmed

Hardly structured

vpr: Attractor dimension

- No clear scaling zone
- No evidence for a (low dimensional) attractor
- Stochastic signal??

vpr:

- Seems to originate from a non deterministic time series
- However, the underlying processes in the microprocessor are fundamentally deterministic
- How to discriminate stochastic/deterministic with long repetition period?

vpr:

- Seems to originate from a non deterministic time series
- However, the underlying processes in the microprocessor are fundamentally deterministic
- How to discriminate stochastic/deterministic with long repetition period?
- Similar behaviors observed for art (Neural networks) or crafty (Chess game)
Example (from NKS p.129)

Simple "nested" recursion:

$$f(n) = f(f(n-1)) + f(n-2f(n-1)+1), \quad f(1) = f(2) = 1$$

Shown are fluctuations around the average trend $0.42n^{0.816}$

 Easy to generate complex (stochastic-like) series with simple deterministic processes

To conclude

996

~

・ロト ・ 御 ト ・ 臣 ト ・ 臣 ト ・

Regular periodicity

- Regular periodicity
- Deterministic chaos

- Regular periodicity
- Deterministic chaos
- Non chaotic, "stochastic-like" behaviors

- Regular periodicity
- Deterministic chaos
- Non chaotic, "stochastic-like" behaviors
- Dynamics type of a program ≠ correlated to simple characteristics (e.g. floating-point vs integer-based codes...)
- but rather to how microprocessor architecture (memory hierarchy, branch predictors...) is used by the program.

- Regular periodicity
- Deterministic chaos
- Non chaotic, "stochastic-like" behaviors
- Dynamics type of a program ≠ correlated to simple characteristics (e.g. floating-point vs integer-based codes...)
- but rather to how microprocessor architecture (memory hierarchy, branch predictors...) is used by the program.

For further information/analysis:

- Berry, Gracia Pérez & Temam (2006) CHAOS 16:013110 (arXiv:nlin.AO/0506030)
- www-rocq.inria.fr/~berry

Why this complexity?

<ロ><日><日><日><日<</td>

2

≪ ≣

Hiding memory latency

- The increase rate of the clock frequency is much larger than that of memory accesses
- The latency for memory access is thus always larger (currently, **hundreds** of cycles for RAM access)

Image: A image: A

• A myriad of mechanisms has been developed to "hide" this caveat and increase performance:

Hiding memory latency

- The increase rate of the clock frequency is much larger than that of memory accesses
- The latency for memory access is thus always larger (currently, hundreds of cycles for RAM access)
- A myriad of mechanisms has been developed to "hide" this caveat and increase performance:
- Cache memory hierarchies (data and instructions)
- Parallelization at various levels
- Pipelining

Speculative execution

• □ ▶ • □ ▶ • □ ▶

Hiding memory latency

- The increase rate of the clock frequency is much larger than that of memory accesses
- The latency for memory access is thus always larger (currently, hundreds of cycles for RAM access)
- A myriad of mechanisms has been developed to "hide" this caveat and increase performance:
- Cache memory hierarchies (data and instructions)
- Parallelization at various levels
- Pipelining
- Speculative execution

• ...

Increase of the complexity

Х

X==0 C

(日)

э

 If prediction = true: the memory latency time has been skipped

 If not: forget speculative execution results

Performance can be history-dependent

< 一型

∢ ≣ ►

 If not: forget speculative execution results • Performance (number of instructions executed per time units) at a given point depends on a huge quantity of architectural mechanisms, that interact in a nonlinear fashion.

 The state of each of these mechanisms at a given point cannot be known precisely.

 This property has been exploited to build random number generators (Seznec & Sandrier, 2003).

Supplementary results for applu

- (E

• Clear regular periodicity (limit cycle)

- Clear regular periodicity (limit cycle)
- PERIODICAL PERFORMANCE OSCILLATIONS.

applu: Spectral analysis

• Clear periodic behavior.

Supplementary results for bzip2

月 ▶ ∢ ∋

bzip2: Spectral Analysis

 Some peaks, but a very "dense" structure, typical of chaotic/stochastic signals

э

590

bzip2: Spectral Analysis (2)

bzip2: Spectral Analysis (2)

• $S(f) \propto f^{-\beta}$ with $\beta \approx 1.3 \Longrightarrow \approx "1/f"$ spectrum

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ◆ ○ ◆

bzip2: Spectral Analysis (2)

- $S(f) \propto f^{-\beta}$ with $\beta \approx 1.3 \Longrightarrow \approx "1/f"$ spectrum
- Fractal series with long term correlations

• • • • • • • • • •

590

-

• Principle [Peng et al. (1995) CHAOS 5:82]:

• Centering and integration:
$$y_k = \sum_{i=1}^k [x_i - \langle x \rangle]$$

- Principle [Peng et al. (1995) CHAOS 5:82]:
 - Centering and integration: $y_k = \sum_{i=1}^k [x_i \langle x \rangle]$
 - The series is then cut in segments of size *n* instructions

Image: A (1)

- Principle [Peng et al. (1995) CHAOS 5:82]:
 - Centering and integration: $y_k = \sum_{i=1}^k [x_i \langle x \rangle]$
 - The series is then cut in segments of size *n* instructions

Fluctuations around the linear tendency:

$$F(n) = \sqrt{\frac{1}{N} \sum_{k=1}^{N} [y_k - \bar{y}_k]^2}$$

- Principle [Peng et al. (1995) CHAOS 5:82]:
 - Centering and integration: $y_k = \sum_{i=1}^k [x_i \langle x \rangle]$
 - The series is then cut in segments of size *n* instructions

Fluctuations around the linear tendency:

$$F(n) = \sqrt{\frac{1}{N} \sum_{k=1}^{N} [y_k - \bar{y}_k]^2}$$

• For "fractal" time series: $F(n) \propto n^{\alpha}$

- Principle [Peng et al. (1995) CHAOS 5:82]:
 - Centering and integration: $y_k = \sum_{i=1}^k [x_i \langle x \rangle]$
 - The series is then cut in segments of size *n* instructions

• Fluctuations around the linear tendency:

$$F(n) = \sqrt{\frac{1}{N} \sum_{k=1}^{N} [y_k - \bar{y}_k]^2}$$

- For "fractal" time series: $F(n) \propto n^{\alpha}$
- $\alpha = 0.5$: no correlation;
- α > 0.5: "Fractal" time series with long term correlations;
- Theoretically, $\alpha = (1 + \beta)/2$ [Rangarajan & Ding (2000) *PRE* 61:4991].

• $\alpha \approx 1.13$ (compare to $(1+\beta)/2 = 1.15$)

▲ 同 ▶ ▲ 三

ъ

2

500

- $\alpha \approx 1.13$ (compare to $(1+\beta)/2 = 1.15$)
- bzip2 = "fractal" series with along term correlations
- Correlations = persistent (large values are more likely to occur after a large value)

Recurrence plots (RPs): Principle

- Thresholded RPs: [Eckmann et al. (1987) Europhysics Lett. 5:973]
 - Qualitative tests for the presence of patterns and nonlinearity in time series
 - Build the distance matrix between each pair of points in the embedded attractor, then threshold the distance:

 $\mathbf{R}_{i,j} = \Theta \left(\boldsymbol{\xi} - \parallel \mathbf{X}_{\mathbf{i}} - \mathbf{X}_{\mathbf{j}} \parallel \right) \qquad i, j = 1, \dots, p$

where $\Theta(\cdots)$: Heaviside step function

Qualitative graphical interpretation:

- Diagonals: determinism
- Isolated points: stochasticity
- Interrupted diagonals + isolated points: chaos

Examples of RPs

Gaussian (white) noise

1000	1			• • •		·
	1.2.3	1.840	1	レンション	1995 - S 20 203	
	1. 🛍 🕯	1.462	新新 探 (李二)	人名法法 建化	4X 6 5 👪	3325
			n de la compañía de l	· 영상 : 영상	1. 1. 1980	1.1
800	فر الآنام		end and the second second	1. S.	فأخذ ومستعمر وأتواق	144
	- i. i.	16.0	And Street St.		S. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	
			1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	1. 1997 - J	yangan aran ang ang ang ang ang ang ang ang ang a	
		1. 2. 4	م بر مربع میں میں م میں ایک و میں میں میں ک		ւլ, որ առաջություն։ Դարտան մեր չէր առաջո	
600	1			1 - 1		21
			12 12 X V	. <u>/</u>	14 - C. L. L.	
	· 294 •		، الم الم الح الم	1	2-2-2-3 7 Mai-	. I
	4.1.1		and the second		يرقن ويرجع المراجع	요네.
400	14 5 10	11 - T	A & 46 . 18	5 44 3 3	13.12 M 18 18	· ? .
		2	4. C. 1. 8. 4 1	Sa di Fil	1. S. C. C. J. S. B. J.	
	5 10 10	300	in la com	a an	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
	44.4	S & S	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
- 4 4	1	13.1			1.1.1.1.1.1.1.	6
244	1997 8	esta -			(1)的 化乙酸	
	1	7.	A SE AN LAN			
	11/2	Sec. 2			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
	A		No state of the state		KAN S S MA	
0	1	1	1		1	
	0	200	400	600	800	1000

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

• Scalar series: ipc; Embedding w/ m = 5 and $\tau = 0.14 \times 10^9$ instructions.

< 口 > < 同

 э

chaotic time series?

bzip2: Poincaré sections

- Structured map
- Mainly mono-dimensional

590

-

 Coherent w/ a strange attractor

bzip2: Surrogate data tests

Surrogates have same Fourrier amplitudes and value distribution as real data. Nonlinearity tested using a simple nonlinearity predictor and time reversal assymetry statistics. 2.0 real IPC 1.6 1.2 • 0.8 -2.0 Surrogates 1.6 1.2 0.8 -20 60 80 x10⁹ instructions

- Possibility that the IPC trace is due to a stationary, possibly rescaled, linear Gaussian random process is be rejected at the 95 % level of significance
- Same conclusion raised when applied to isolated bzip2 regions

Supplementary results for vpr

• Series: ipc; Embedding w/ m = 4 and $\tau = 4.16 \times 10^9$ instructions.

vpr: RPs

• Series: ipc; Embedding w/ m = 4 and $\tau = 4.16 \times 10^9$ instructions.

- Low determinism (lowly structured)
- Close to what is expected for a white noise

vpr: RPs

• Series: ipc; Embedding w/ m = 4 and $\tau = 4.16 \times 10^9$ instructions.

- Low determinism (lowly structured)
- Close to what is expected for a white noise

vpr: Poincaré sections

- Hardly structured
- Stochasticity?

vpr: Spectral Analysis + DFA

• $S(f) \propto f^{-\beta}$ with $\beta \approx 0.86$

- Bad linear regression, but $\alpha \approx 0.86$ (compare w/ $(1+\beta)/2 = 0.93$)
- vpr could also be "fractal"

vpr: Surrogate data tests

Surrogates have same Fourrier amplitudes and value distribution as real data.

- The null hypothesis that the IPC trace is due to a stationary, possibly rescaled, linear Gaussian random process could not be rejected (95 % level of significance)
- Another point in favor of a stochastic process

Delay embedding of strange attractors

An example of attractor embedding: Lorenz

$$\dot{X} = \sigma(Y - X)$$
 $\dot{Y} = -XZ + rX - Y$ $\dot{Z} = XY - bZ$

An example of attractor embedding: Lorenz

$$\dot{X} = \sigma(Y - X)$$
 $\dot{Y} = -XZ + rX - Y$ $\dot{Z} = XY - bZ$

• Topology conserved w/ m = 3, $\tau = 0.05$