
Two-State Graph-Rewriting
Automata

Kohji Tomita*,
Haruhisa Kurokawa*,
Satoshi Murata**
* National Institute of Advanced Industrial Science and Technology (AIST)
** Tokyo Institute of Technology

NKS 2006 Conference, Jun 18, 2006

Lattice-based symbol dynamics
Cellular Automata Model
– Self-Reproducing automata

by von Neumann in 1950s
– State transition on lattice space
– Life Game, Lattice Gas Automata
– New Kind of Science by Wolfram
– Cell space cannot be generated

• Infinite space or torus is assumed

Graph-rewriting automata

Variant of graph-rewriting system
graph development with state transition and
structure rewriting
Rules in a regular form (like CA)
Not restricted on lattice space
Define cellular automata on graphs
– Standard state transition rules
– Rewrite rules of graph structure

Dynamic graph automata

Why dynamic graph?

Rich expressibility:
– Not restricted on lattice space
– Changing topology & number of nodes
– Connection between remote nodes
– Arbitrary many division of space
– Closed surface / boundary condition

Non-lattice model

Disadvantage:
– Information of connection relation

← 3-link planar graphs
– Less simple

← 3-link planar graphs (& regular rules)
– Visualization

← embed in 3D space

Related study

Evolution of Networks
(NKS Ch. 9, Wolfram 2002)

Graph grammar based systems
– Some systems in Artificial Chemistry

(e.g., Benkö et al. 2003)
– Programmable Parts (Klavins et al. 2005)
– DynaGraph (Saidani et al. 2004)

Contents

Definition of graph-rewriting automata
Examples
Two-State graph-rewriting automata
Alternative formulations
Conclusions

Definition of
Graph-Rewriting Automata

Basic structure
3-link planar graph
– Minimum to generate

nontrivial structures
– Link order at each node

Node state:
from arbitrary finite set

Examples:

m

Graph-rewriting automata
Structural rewriting (without states)

a

x

cb

a

cb

u

v w

x

y

a b

c d

u v

a b

c d

Graph-rewriting automata
Structural rewriting 1 (with states)

a

ｙ

cb
trans (x, a, b, c) → y

div (x, a, b, c) → (u, v, w)

fus (u, v, w, a, b, c)
→ x

com (a, b, c, d, x, y)
→(u, v)

xy

a

x

cb

x

y

Graph-rewriting automata
Structural rewriting 2 (with states)

a

ｙ

cb
trans x, (a, b, c) → y

div x, (a, b, c) → y

com (x, y)

a

y

cb

y y

anh (x, y) (separation of
graphs)

Node
rules

Link
rules

a b

c d

a b

c d

a b

c d

Update procedure

Given: initial graph, rule set (list of rules)
Deterministic update
– Synchronous rule application

• node rules (trans, div) at even time
• link rules (com, anh) at odd time

– Lateral inhibition
• suppress neighbor link rule activation

0 0

1

2

div 1(0,0,2)→1
com (1,2)
com (0,0)

…

com (0, 1)

div 0 (1, 1,1) 0
div 1 (0, 0, 0) 1

Example1: regular division

Example2: self-replication of
4-node structure

Initial state：4-node (different states)
19 rules (6 states):
com (2, 3)
div 0 (1, 3, 3) →0
div 1 (0, 2, 2) →1
div 3 (0, 0, 2) →4
div 2 (1, 1, 3) →2
trans 0 (0, 0, 1) →1
trans 1 (1, 1, 0) →0
trans 4 (4, 4, 2) →2
trans 2 (2, 2, 4) →4
trans 4 (4, 0, 2) →3

trans 4 (4, 2, 0) →1
trans 0 (0, 1, 4) →2
trans 2 (4, 4, 4) →5
trans 4 (2, 2, 2) →5
trans 1 (0, 0, 0) →5
trans 0 (1, 1, 1) →5
trans 2 (2, 1, 4) →0
trans 1 (1, 2, 0) →3
anh (5, 5)

Two-State Graph-rewriting
Automata

Exhaustive trial of two-state rules

Internal state ∈ {0, 1}
Development processes from simple
initial structures

Execution until
80 steps or 1,000 nodes

S0 S1 S2 S6 S8

0
1

Notation of rule-set

[0..3] 8 [0..2] 3 = 1,769,472
11 digits (8 for node rules + 3 for link rules)

example: 01223110 210

d 1,(0,0,0) → 1
s 1,(0,0,1) → 1
s 1,(0,1,1) → 1
s 1,(1,1,1) → 0

a (0,0)
c (0,1)

s 0,(0,0,0) → 0
s 0,(0,0,1) → 1
d 0,(0,1,1) → 0
d 0,(1,1,1) → 0

0: s () → 0
1: s () → 1
2: d () → 0
3: d () → 1

0: nop
1: com
2: anh

Possible local configurations

applicable (3/34)
000 = 011 = 012 = 021 = 022 = 110 = 120 = 210 = 220
= 111 = 112 = 121 = 122 = 211 = 212 = 221 = 222

No link rule
for 17/27

0 500000 1000000 1500000 2000000

S0

S1

S2

S6

S8

div

halt

loop

exp

cont

Results

halt node limit

limit cycle step limit

Class I Class II Class II, etc.

0 10000 20000 30000 40000

S0

S1

S2

S6

S8

srep

divhalt

divloop

divexp

divcont

Results – separated cases

halt node limit

limit cycle
step limit

self-replication

Nodes limit – simple case

Same state

State change
Less than twice

00001103 200 S2

00001310 000 S2

Node limit – other cases

Halt

612 nodes

00000302 200 S2

00230302 010 S2

18 nodes

Steps limit

00300023 000 S2

00300210 000 S2

Self-replicating processes

01100202 201 S2 03002310 201 S1 01110200 201 S2

03220112 020 S2

03120021 201 S1

03010212 202 S1

Other self-replicating patterns

5770 (56)

01000232 010 S1

4 (0)

9820 (60) 17524 (64) 29254 (68)

40 (10) 118 (24)

1522 (46)

node size (step)

472 (38)

01000232 010 S1

steps

n
u
m
be
r
o
f
n
o
de
s

not so complex

1

10

100

1000

10000

100000

0 10 20 30 40 50 60 70

(without annihilation)

steps

n
u
m
be
r
o
f
n
o
de
s

03210010 102 S1

1

10

100

1000

10000

100000

0 5 10 15 20 25 30 35 40

03210010 102 S1 node size (step)

4 (0) 28 (6) 64 (11)

124 (13) 358 (19) 658 (21)

Programmability

• Using Many States
• Rule set design

Turing machine

Logical model of computation
Modeled by ladder structure in GA

tape

EOT

head

EOT

Self-replicating Turing machine

Expression of self-replicating TM
– 20 states, 257 rules (2-symbols)

Universal Turing machine
– Minsky’s ``small’’ UTM (4-symbols 7-states)
– 30 states, 955 rules (for reproducing) +

23 states, 745 rules (for computation)

Simulation of synchronous graph-
rewriting automata by
asynchronous updating model

Arbitrary rules are applied at arbitrary time
By explicitly introducing local synchronization
by different states
(like simulating SCA by ACA)
Execution of structural change can be detected
by neighbors

Alternative Formulations

(1) Non-planar, many states
(2) Dual GA

(1) Non-planar graphs

Node rules
rule x, (a, b, c) → y

a

x

cb

a

y

cb

y y

div

a

ｙ

cb

trans

Link rules
rule (x,y)

New link rule `swap’

x

y

com anh

xy
x

y

swp

(x≠y)

von Neumann style self-replication
Self-replication with translation/transcription
of encoded program in structure
Using construction arm (requires many states)

reader manipulator

encoded program

construction arm

(2) Dual graph automata

link
node

cell

cell generation

cell commutation

cell fusion

Assign states to
cells

rewrite rules

Initial graph：２-state ３-cell
Rules (10)
a 1,3,3,1,2,0 (a 1,3,3,1,0,2)
a 3,2,3,4,4,0
a 4,1,3,4,3,0 (a 4,1,3,3,4,0)
g 3,2,0,4 (g 3,0,2,4)
c 1,1,2,0
c 2,3,4,4
f 0,2,4,4, 0

Ex. Self-reproduction

commutation

generation

commutation

fusion

Conclusions & Future Work

Conclusions
Graph-rewriting automata
– System that generates its boundary

condition by itself
– Not restricted to lattice space

• Changing topology & number of nodes

Programmability using many states
Various development processes
with 2 states
– Self-replication

Some variants (non-planar, dual)

Future work in two-state case

In preliminary stage. More analysis
– Class III, IV behavior ?
– Localized structure ?
– Minimal rules ?

Universality
– computational, construction

Large scale graphs
Visualization
Simpler 1-D case with 2-links ?

General case
Function other than self-replication

Extensions:
– Asynchronous, continuous, …
– External environment, interaction among groups

Self-replication

structure

functionality

interaction

