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Definition of the CA

I CA on a 2-dim. rectangle with 8 possible states for each cell:
{0, 1, 2, 3, 4, 5, 6, 7}

I Idea: each cell contains a number of “grains of sand” (or
“chips”)

I Neighborhood: von Neumann, with radius 1
I Local rule:

I If a cell has at least 4 grains
I it moves 1 to each of its neighbors (toppling, firing).
I If a cell at the border fires, 1 or 2 grains are lost.

I stable configuration: all states ≤ 3

Fact:

I Each unstable configuration leads to a stable one after a finite
number of steps. Call this a relaxation.
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Question 1

Is this a “simple program”?



Remarks

I It’s “simple enough” to be generalized to arbitrary graphs:
I A node fires if it has at least as many chips as it has links to

neighbors.
I This is called the chip firing game.

I It is a “robust” program:

I One reaches the same stable configuration, no matter whether
synchronous or asynchronous updating is used.

I (a little bit of care required . . . )



Markov chain

Given a stable configuration

I choose with equal probability one of the cells,

I add one grain of sand to it, and

I relax to the next stable configuration.
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Transient and recurrent configurations

I recurrent configuration: a stable configuration c such that
after having added one grain anywhere in c one can always
add more grains such that relaxation leads to c again

I transient configuration: a non-recurrent configuration

Examples:

I all cells in state 3: recurrent

I all cells in state 0: transient



Some nice results about recurrent configurations

I Linear time check whether a configuration is recurrent:
burning algorithm.

I The recurrent configurations form an Abelian group under the
operation ⊕ of pointwise addition followed by relaxation.

I The number of recurrent configurations equals
I the number of rooted spanning forests

of the graph of nodes and boundary cells
I the determinant of the Laplacian of that graph

I and more . . .



How do recurrent configurations look like?

I Does it look random?



Question 2

What is “random”?



From zero to recurrent
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From random to recurrent
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Less is known about the transient configurations.

I Partial orders?
(such that adding sand always leads to confs. “upward”)

I Can one measure a “distance from the set of recurrent
configurations”?
(such that adding sand always decreases the “distance”)

skip partial orders



Partial orders on (transient) configurations

I reachability c ≤ d ⇐⇒ ∃ e : c ⊕ e = d

I Def.: diff (c , d) = 3− (c ⊕ (3− d)))

I Fact: c ≤ d ⇐⇒ c ⊕ diff (c , d) = d

I c v d ⇐⇒ diff (d , c) = 0



“Distance from recurrent configurations”

Consider 3-dim. case with 32 2-dim. layers:

I Problem instance: a transient configuration for that case

I Question: What is the minimum number of grains you have to
add in order to reach a recurrent configuration?

I Theorem (M. Schulz, 2006):
This problem is NP-complete.

I Proof: by reduction from 3SAT.



Construction 1
One layer with columns for setting each variable:
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Construction 2
One layer for each clause, e.g. x1 ∨ x̄2 ∨ x3:
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Question 3

Is the problem NP-complete for 2-dimensional CA?

skip another measure



Another measure

I m(c) = grains(id)− grains(diff (c , c ⊕ id))
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Outlook

I M. Schulz is now looking for CA with only 2 states showing
“similar” behavior (at least for asynchronous updating).



Thank you very much for your attention.
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