
Proving and Programming

Cristian S. Calude
www.cs.auckland.ac.nz/~cristian

(joint work with Elena Calude and Solomon Marcus)

Cristian S. Calude www.cs.auckland.ac.nz/~cristian (joint work with Elena Calude and Solomon Marcus)

Proving and Programming

www.cs.auckland.ac.nz/~cristian
www.cs.auckland.ac.nz/~cristian


Proving vs programming

There is a strong analogy between proving theorems in
mathematics and writing programs in computer science. This
paper is devoted to an analysis, from the perspective of this
analogy, of proof in mathematics.



We will argue that: 1

Theorems (in mathematics) correspond to algorithms and not
programs (in computer science); algorithms are subject to
mathematical proofs (for example for correctness).

The role of proof in mathematical modelling is very little:
adequacy is the main issue.

Programs (in computer science) correspond to mathematical
models. They are not subject to proofs, but to an adequacy
analysis; in this type of analysis, some proofs may appear.
Correctness proofs in computer science (if any) are not
cost-effective.

Cristian S. Calude www.cs.auckland.ac.nz/~cristian (joint work with Elena Calude and Solomon Marcus)

Proving and Programming

www.cs.auckland.ac.nz/~cristian


We will argue that: 1

Theorems (in mathematics) correspond to algorithms and not
programs (in computer science); algorithms are subject to
mathematical proofs (for example for correctness).

The role of proof in mathematical modelling is very little:
adequacy is the main issue.

Programs (in computer science) correspond to mathematical
models. They are not subject to proofs, but to an adequacy
analysis; in this type of analysis, some proofs may appear.
Correctness proofs in computer science (if any) are not
cost-effective.

Cristian S. Calude www.cs.auckland.ac.nz/~cristian (joint work with Elena Calude and Solomon Marcus)

Proving and Programming

www.cs.auckland.ac.nz/~cristian


We will argue that: 1

Theorems (in mathematics) correspond to algorithms and not
programs (in computer science); algorithms are subject to
mathematical proofs (for example for correctness).

The role of proof in mathematical modelling is very little:
adequacy is the main issue.

Programs (in computer science) correspond to mathematical
models. They are not subject to proofs, but to an adequacy
analysis; in this type of analysis, some proofs may appear.
Correctness proofs in computer science (if any) are not
cost-effective.

Cristian S. Calude www.cs.auckland.ac.nz/~cristian (joint work with Elena Calude and Solomon Marcus)

Proving and Programming

www.cs.auckland.ac.nz/~cristian


We will argue that: 2

Rigour in programming is superior to rigour in mathematical
proofs.

Programming gives mathematics a new form of understanding.

Although the Hilbertian notion of proof has few chances to
change, future proofs will be of various types, will play
different roles, and their truth will be checked differently.

Cristian S. Calude www.cs.auckland.ac.nz/~cristian (joint work with Elena Calude and Solomon Marcus)

Proving and Programming

www.cs.auckland.ac.nz/~cristian


We will argue that: 2

Rigour in programming is superior to rigour in mathematical
proofs.

Programming gives mathematics a new form of understanding.

Although the Hilbertian notion of proof has few chances to
change, future proofs will be of various types, will play
different roles, and their truth will be checked differently.

Cristian S. Calude www.cs.auckland.ac.nz/~cristian (joint work with Elena Calude and Solomon Marcus)

Proving and Programming

www.cs.auckland.ac.nz/~cristian


We will argue that: 2

Rigour in programming is superior to rigour in mathematical
proofs.

Programming gives mathematics a new form of understanding.

Although the Hilbertian notion of proof has few chances to
change, future proofs will be of various types, will play
different roles, and their truth will be checked differently.

Cristian S. Calude www.cs.auckland.ac.nz/~cristian (joint work with Elena Calude and Solomon Marcus)

Proving and Programming

www.cs.auckland.ac.nz/~cristian

