Search NKS | Online

41 - 46 of 46 for FoldList
Fibonacci[n] can be obtained in many ways: • (GoldenRatio n - (-GoldenRatio) -n )/ √ 5 • Round[GoldenRatio n / √ 5 ] • 2 1 - n Coefficient[(1 + √ 5 ) n , √ 5 ] • MatrixPower[{{1, 1}, {1, 0}}, n - 1] 〚 1, 1 〛 • Numerator[NestList[1/(1 + #)&, 1, n]] • Coefficient[Series[1/(1 - t - t 2 ), {t, 0, n}], t n - 1 ] • Sum[Binomial[n - i - 1, i], {i, 0, (n - 1)/2}] • 2 n - 2 - Count[IntegerDigits[Range[0, 2 n - 2 ], 2], {___, 1, 1, ___}] A fast method for evaluating Fibonacci[n] is First[Fold[f, {1, 0, -1}, Rest[IntegerDigits[n, 2]]]] f[{a_, b_, s_}, 0] = {a (a + 2b), s + a (2a - b), 1} f[{a_, b_, s_}, 1] = {-s + (a + b) (a + 2b), a (a + 2b), -1} Fibonacci numbers appear to have first arisen in perhaps 200 BC in work by Pingala on enumerating possible patterns of poetry formed from syllables of two lengths. … In addition: • GoldenRatio is the solution to x  1 + 1/x or x 2  x + 1 • The right-hand rectangle in is similar to the whole rectangle when the aspect ratio is GoldenRatio • Cos[ π /5]  Cos[36 ° ]  GoldenRatio/2 • The ratio of the length of the diagonal to the length of a side in a regular pentagon is GoldenRatio • The corners of an icosahedron are at coordinates Flatten[Array[NestList[RotateRight, {0, (-1) #1 GoldenRatio, (-1) #2 }, 3]&, {2, 2}], 2] • 1 + FixedPoint[N[1/(1 + #), k] &, 1] approximates GoldenRatio to k digits, as does FixedPoint[N[Sqrt[1 + #],k]&, 1] • A successive angle difference of GoldenRatio radians yields points maximally separated around a circle (see page 1006 ).
The predecessors of a given state can be found from Cases[Map[Fold[Prepend[#1, If[#2  1 ⊻ , Take[#1, 2]  {0, 0}], 0, 1]] &, #, Reverse[list]] &, {{0, 0}, {0, 1}, {1, 0}, {1, 1}}], {a_, b_, c___, a_, b_}  {b, c, a}]
.) • Will a given sequence of pair comparisons correctly sort any list (see page 1142 )? • Will a given pattern of origami folds yield an object that can be made flat?
This specification gives a list of three blocks {b 1 , b 2 , b 3 } and the final initial conditions consist of an infinite repetition of b 1 blocks, followed by b 2 , followed by an infinite repetition of b 3 blocks. … CTToR110[rules_ /; Select[rules, Mod[Length[#], 6] ≠ 0 &]  {}, init_] := Module[{g1, g2, g3, nr = 0, x1, y1, sp}, g1 = Flatten[ Map[If[#1 === {}, {{{2}}}, {{{1, 3, 5 - First[#1]}}, Table[ {4, 5 - # 〚 n 〛 }, {n, 2, Length[#]}]}] &, rules] /. a_Integer  Map[({d[# 〚 1 〛 , # 〚 2 〛 ], s[# 〚 3 〛 ]}) &, Partition[c[a], 3]], 4]; g2 = g1 = MapThread[If[#1 === #2 === {d[22, 11], s3}, {d[ 20, 8], s3}, #1] &, {g1, RotateRight[g1, 6]}]; While[Mod[ Apply[Plus, Map[# 〚 1, 2 〛 &, g2, 30] ≠ 0, nr++; g2 = Join[ g2, g1]]; y1 = g2 〚 1, 1, 2 〛 - 11; If[y1 < 0, y1 += 30]; Cases[ Last[g2] 〚 2 〛 , s[d[x_, y1], _, _, a_]  (x1 = x + Length[a])]; g3 = Fold[sadd, {d[x1, y1], {}}, g2]; sp = Ceiling[5 Length[ g3 〚 2 〛 ]/(28 nr) + 2]; {Join[Fold[sadd, {d[17, 1], {}}, Flatten[Table[{{d[sp 28 + 6, 1], s[5]}, {d[398, 1], s[5]}, { d[342, 1], s[5]}, {d[370, 1], s[5]}}, {3}], 1]] 〚 2 〛 , bg[ 4, 11]], Flatten[Join[Table[bgi, {sp 2 + 1 + 24 Length[init]}], init /. {0  init0, 1  init1}, bg[1, 9], bg[6, 60 - g2 〚 1, 1, 1 〛 + g3 〚 1, 1 〛 + If[g2 〚 1, 1, 2 〛 < g3 〚 1, 2 〛 , 8, 0]]]], g3 〚 2 〛 }] s[1] = struct[{3, 0, 1, 10, 4, 8}, 2]; s[2] = struct[{3, 0, 1, 1, 619, 15}, 2]; s[3] = struct[{3, 0, 1, 10, 4956, 18}, 2]; s[4] = struct[{0, 0, 9, 10, 4, 8}]; s[5] = struct[{5, 0, 9, 14, 1, 1}]; {c[1], c[2]} = Map[Join[{22, 11, 3, 39, 3, 1}, #] &, {{63, 12, 2, 48, 5, 4, 29, 26, 4, 43, 26, 4, 23, 3, 4, 47, 4, 4}, {87, 6, 2, 32, 2, 4, 13, 23, 4, 27, 16, 4}}]; {c[3], c[4], c[5]} = Map[Join[#, {4, 17, 22, 4, 39, 27, 4, 47, 4, 4}] &, {{17, 22, 4, 23, 24, 4, 31, 29}, {17, 22, 4, 47, 18, 4, 15, 19}, {41, 16, 4, 47, 18, 4, 15, 19}}] {init0, init1} = Map[IntegerDigits[216 (# + 432 10 49 ), 2] &, {246005560154658471735510051750569922628065067661, 1043746165489466852897089830441756550889834709645}] bgi = IntegerDigits[9976, 2] bg[s_, n_] := Array[bgi 〚 1 + Mod[# - 1, 14] 〛 &, n, s] ev[s[d[x_, y_], pl_, pr_, b_]] := Module[{r, pl1, pr1}, r = Sign[BitAnd[2^ListConvolve[{1, 2, 4}, Join[bg[pl - 2, 2], b, bg[pr, 2]]], 110]]; pl1 = (Position[r - bg[pl + 3, Length[r]], 1 | -1] /. {}  {{Length[r]}}) 〚 1, 1 〛 ; pr1 = Max[pl1, (Position[r - bg[pr + 5 - Length[r], Length[r]], 1 | -1] /. {}  {{1}}) 〚 -1, 1 〛 ]; s[d[x + pl1 - 2, y + 1], pl1 + Mod[pl + 2, 14], 1 + Mod[pr + 4, 14] + pr1 - Length[r], Take[r, {pl1, pr1}]]] struct[{x_, y_, pl_, pr_, b_, bl_}, p_Integer : 1] := Module[ {gr = s[d[x, y], pl, pr, IntegerDigits[b, 2, bl]], p2 = p + 1}, Drop[NestWhile[Append[#, ev[Last[#]]] &, {gr}, If[Rest[Last[#]] === Rest[gr], p2--]; p2 > 0 &], -1]] sadd[{d[x_, y_], b_}, {d[dx_, dy_], st_}] := Module[{x1 = dx - x, y1 = dy - y, b2, x2, y2}, While[y1 > 0, {x1, y1} += If[Length[st]  30, {8, -30}, {-2, -3}]]; b2 = First[Cases[st, s[d[x3_, -y1], pl_, _, sb_]  Join[bg[pl - x1 - x3, x1 + x3], x2 = x3 + Length[sb]; y2 = -y1; sb]]]; {d[x2, y2], Join[b, b2]}] CTToR110[{{}}, {1}] yields blocks of lengths {7204, 1873, 7088} .
And in general if h is associative the result Nest[h[r, #]&, s, t] of t steps of evolution can be rewritten for example using the repeated squaring method as h[Fold[If[#2  0, h[#1, #1], h[r, h[#1, #1]]] &, r, Rest[IntegerDigits[t, 2]]], s] which requires only about Log[t] rather than t applications of h . … In both cases it then turns out that h can be obtained from (see note above ) h[a_, b_] := FromDigits[g[ListConvolve[ IntegerDigits[a, k], IntegerDigits[b, k], {1, -1}, 0]], k] where for multiplication rules g = Identity and for additive cellular automata g = Mod[#, k] & .
With the development of lambda calculus in the early 1930s it became clear that given any expression expr such as x[y[x][z]] with a list of variables vars such as {x, y, z} one can always find a combinator equivalent to a lambda function such as Function[x, Function[y, Function[z, x[y[x][z]]]]] , and it turns out that this can be done simply using ToC[expr_, vars_] := Fold[rm, expr, Reverse[vars]] rm[v_, v_] = id rm[f_[v_], v_] /; FreeQ[f, v] = f rm[h_, v_] /; FreeQ[h, v] = k[h] rm[f_[g_], v_] := s[rm[f, v]][rm[g, v]] So this shows that any lambda function can in effect be written in terms of combinators, without anything analogous to variables ever explicitly having to be introduced.
12345