Search NKS | Online

11 - 16 of 16 for Split
In many situations, individual cracks will split into multiple cracks as they propagate, sometimes producing elaborate tree-like structures.
Ulam systems Having formulated the system around 1960, Stanislaw Ulam and collaborators (see page 877 ) in 1967 simulated 120 steps of the process shown below, with black cells after t steps occurring at positions Map[First, First[Nest[UStep[p[q[r[#1], #2]] &, {{1, 0}, {0, 1}, {-1, 0}, {0, -1}}, #] &, ({#, #} &)[{{{0, 0}, {0, 0}}}], t]]] UStep[f_, os_, {a_, b_}] := {Join[a, #], #} &[f[Flatten[ Outer[{#1 + #2, #1} &, Map[First, b], os, 1], 1], a]] r[c_]:= Map[First, Select[Split[Sort[c], First[#1]  First[#2] &], Length[#]  1 &]] q[c_, a_] := Select[c, Apply[And, Map[Function[u, qq[#1, u, a]], a]] &] p[c_]:= Select[c, Apply[And, Map[Function[u, pp[#1, u]], c]] &] pp[{x_, u_}, {y_, v_}] := Max[Abs[x - y]] > 1 || u  v qq[{x_, u_}, {y_, v_}, a_] := x  y || Max[Abs[x - y]] > 1 || u  y || First[Cases[a, {u, z_}  z]]  y These rules are fairly complicated, and involve more history than ordinary cellular automata.
{x_, y_}  {{x, y}, {x + 1, y}, {x, y + 1}}, 1] &, {{0, 0}}, n] • Transpose[{Re[#], Im[#]}] &[ Flatten[Nest[{2 #, 2 # + 1, 2 # +  } &, {0}, n]]] (compare page 1005 ) • Position[Map[Split, NestList[Sort[Flatten[{#, # + 1}]] &, {0}, 2 n - 1]], _?
But if IntegerDigits[x, 2] involves no consecutive 0's then for example f[x] can be obtained from 2^(b[Join[{1, 1}, #], Length[#]] &)[IntegerDigits[x, 2]] - 1 a[{l_, _}, r_] := ({l + (5r - 3#)/2, #} &)[Mod[r, 2]] a[{l_, 0}, 0] := {l + 1, 0} a[{l_, 1}, 0] := ({(13 + #(5/2)^IntegerExponent[#, 2])/6, 0} &[6l + 2] b[list_, i_] := First[Fold[a, {Apply[Plus, Drop[list, -i]], 0}, Apply[Plus, Split[Take[list, -i], #1  #2 ≠ 0 &], 1]]] (The corresponding expression for t[x] is more complicated.)
= {}, AllNet[k], q = ISets[b = Map[Table[ Position[d, NetStep[net, #, a]] 〚 1, 1 〛 , {a, 0, k - 1}]&, d]]; DeleteCases[MapIndexed[#2 〚 2 〛 - 1  #1 &, Rest[ Map[Position[q, #] 〚 1, 1 〛 &, Transpose[Map[Part[#, Map[ First, q]]&, Transpose[b]]], {2}]] - 1, {2}], _  0, {2}]]] DSets[net_, k_:2] := FixedPoint[Union[Flatten[Map[Table[NetStep[net, #, a], {a, 0, k - 1}]&, #], 1]]&, {Range[Length[net]]}] ISets[list_] := FixedPoint[Function[g, Flatten[Map[ Map[Last, Split[Sort[Part[Transpose[{Map[Position[g, #] 〚 1, 1 〛 &, list, {2}], Range[Length[list]]}], #]], First[#1]  First[#2]&], {2}]&, g], 1]], {{1}, Range[2, Length[list]]}] If net has q nodes, then in general MinNet[net] can have as many as 2 q -1 nodes.
Here are examples of how some of the basic Mathematica constructs used in the notes in this book work: • Iteration Nest[f, x, 3] ⟶ f[f[f[x]]] NestList[f, x, 3] ⟶ {x, f[x], f[f[x]], f[f[f[x]]]} Fold[f, x, {1, 2}] ⟶ f[f[x, 1], 2] FoldList[f, x, {1, 2}] ⟶ {x, f[x, 1], f[f[x, 1], 2]} • Functional operations Function[x, x + k][a] ⟶ a + k (# + k&)[a] ⟶ a + k (r[#1] + s[#2]&)[a, b] ⟶ r[a] + s[b] Map[f, {a, b, c}] ⟶ {f[a], f[b], f[c]} Apply[f, {a, b, c}] ⟶ f[a, b, c] Select[{1, 2, 3, 4, 5}, EvenQ] ⟶ {2, 4} MapIndexed[f, {a, b, c}] ⟶ {f[a, {1}], f[b, {2}], f[c, {3}]} • List manipulation {a, b, c, d} 〚 3 〛 ⟶ c {a, b, c, d} 〚 {2, 4, 3, 2} 〛 ⟶ {b, d, c, b} Take[{a, b, c, d, e}, 2] ⟶ {a, b} Drop[{a, b, c, d, e}, -2] ⟶ {a, b, c} Rest[{a, b, c, d}] ⟶ {b, c, d} ReplacePart[{a, b, c, d}, x, 3] ⟶ {a, b, x, d} Length[{a, b, c}] ⟶ 3 Range[5] ⟶ {1, 2, 3, 4, 5} Table[f[i], {i, 4}] ⟶ {f[1], f[2], f[3], f[4]} Table[f[i, j], {i, 2}, {j, 3}] ⟶ {{f[1, 1], f[1, 2], f[1, 3]}, {f[2, 1], f[2, 2], f[2, 3]}} Array[f, {2, 2}] ⟶ {{f[1, 1], f[1, 2]}, {f[2, 1], f[2, 2]}} Flatten[{{a, b}, {c}, {d, e}}] ⟶ {a, b, c, d, e} Flatten[{{a, {b, c}}, {{d}, e}}, 1] ⟶ {a, {b, c}, {d}, e} Partition[{a, b, c, d}, 2, 1] ⟶ {{a, b}, {b, c}, {c, d}} Split[{a, a, a, b, b, a, a}] ⟶ {{a, a, a}, {b, b}, {a, a}} ListConvolve[{a, b}, {1, 2, 3, 4, 5}] ⟶ {2a + b, 3a + 2b, 4a + 3b, 5a + 4b} Position[{a, b, c, a, a}, a] ⟶ {{1}, {4}, {5}} RotateLeft[{a, b, c, d, e}, 2] ⟶ {c, d, e, a, b} Join[{a, b, c}, {d, b}] ⟶ {a, b, c, d, b} Union[{a, a, c, b, b}] ⟶ {a, b, c} • Transformation rules {a, b, c, d} /. b  p ⟶ {a, p, c, d} {f[a], f[b], f[c]} /. f[a]  p ⟶ {p, f[b], f[c]} {f[a], f[b], f[c]} /. f[x_]  p[x] ⟶ {p[a], p[b], p[c]} {f[1], f[b], f[2]} /. f[x_Integer]  p[x] ⟶ {p[1], f[b], p[2]} {f[1, 2], f[3], f[4, 5]} /. f[x_, y_]  x + y ⟶ {3, f[3], 9} {f[1], g[2], f[2], g[3]} /. f[1] | g[_]  p ⟶ {p, p, f[2], p} • Numerical functions Quotient[207, 10] ⟶ 20 Mod[207, 10] ⟶ 7 Floor[1.45] ⟶ 1 Ceiling[1.45] ⟶ 2 IntegerDigits[13, 2] ⟶ {1, 1, 0, 1} IntegerDigits[13, 2, 6] ⟶ {0, 0, 1, 1, 0, 1} DigitCount[13, 2, 1] ⟶ 3 FromDigits[{1, 1, 0, 1}, 2] ⟶ 13 The Mathematica programs in these notes are formatted in Mathematica StandardForm .
12