

Planck Natural Units

In 1899, Max Planck proposed a system of Natural Units, where the forlow time t, and distance x_{0} can be defined in the following way.

$$
\begin{gathered}
t_{\bullet}=4.28234(33) \times 10^{-60} \mathrm{Gyr} \\
x_{\bullet}=c t .
\end{gathered}
$$

$$
c=306.595 \mathrm{psc} / \mathrm{kyr}
$$

 These two units are treated as the absolute mini-
mum possible divisions of both space and time Dividing a distance in space or duration of time by their respective units, results in a dimensionless natural number, represented in bold type below:

$$
\boldsymbol{x}=\frac{\Delta \mathrm{x}}{x_{0}} \quad \boldsymbol{t}=\frac{\Delta \mathrm{t}}{t_{0}}
$$

When defining distances from an observer, we will use a causal radius, using twice the distance unit x.

$$
\boldsymbol{r}=\frac{r}{r}
$$

Another type of Planck Natural unit represents the absolute maximum; an example of which are the units of velocity and acceleration. Dividing a velocity or acceleration by their respective units represented similarly in bold type below:

$$
\begin{array}{ll}
\boldsymbol{v}=\frac{\mathrm{v}}{v_{0}} & v_{0}=c \\
\boldsymbol{a}=\frac{\mathrm{a}}{a} & a_{0}=\frac{v_{0}}{t}
\end{array}
$$

Temperature and Entropy

The natural entropy of a black hole is equal to the Planck Natural Unit of area as the surface area of sphere of the Planck radius, and find the Planck entropy $S .: \quad \boldsymbol{S}_{B H}=\boldsymbol{A}_{B H}$
$A_{\mathrm{s}}=4 \pi r^{2}$
S. $=8 \pi^{2} k_{B}$

Planck's original proposal used the Boltzmann constant k_{B} as the Planck Natural Unit of entropy. However, the correct unit above gives us a
Natural Unit of temperature T. as follows:

Cosmological Models

We will consider the Friedmann cosmological nodel - homogeneous, isotropic universe, fille
with a single perfect fluid as defined by an equation of state as follows:

$$
p=w \rho c^{2}
$$

The parameter w is a constant and will be used determining the cosmological time t relative to
redshift z, and the radius of the Hubble sphere r.

$$
t=t_{0}(1+z)^{-\frac{-3}{2}(1+w)}
$$

$$
r_{c}=\frac{3}{2}(1+w) c t
$$

We will also state the equations for the deceleratio
parameter q and radius of the particle horizon r

$$
q_{\circ}=\frac{1}{2}(1+3 w)
$$

$$
r_{H} \approx r_{c} / q_{0}
$$

The universe is matter-dominated when $w=0$, and

$$
t=t_{0}(1+z)^{-3 / 2}
$$

However, due to an assumption in the Friedmann model, the above relation represents a composite time function, which we will refer to as normal
time. The typical assumption of a constant, ime. The typical assumption of a constant, ime. We will demonstrate this function by simply integrating unity over an interval of natural time \boldsymbol{t}

$$
\check{t}=t \cdot \int_{0}^{\boldsymbol{t}} d \boldsymbol{t}=t . \boldsymbol{t}
$$

The flat U above the t indicates unity time. Here the Planck natural unit of time is treated as a constant all natural times. Note the unity-time age of the universe is simply:

$\check{f}_{0}=t . \boldsymbol{t}$

Causal Variable Planck Scale

e will introduce the following causal variation in Planck natural unit of time, relative to the atural time \boldsymbol{t}

$$
t_{\cdot(\boldsymbol{t})}=t_{\cdot}\left(\frac{\boldsymbol{t}_{0}}{\boldsymbol{t}}\right)^{2}
$$

eparating the causal constant $t .$. , we integrate from e origin 0 to the natural time and calculate the ormal time t.

$$
t_{. .}=t_{\mathbf{0}} \mathbf{t}_{\mathrm{o}}^{1 / 4}
$$

$$
t=t . . \int_{0}^{\boldsymbol{t}} \boldsymbol{t}^{-1 / 4} d \boldsymbol{t}
$$

$$
t=\frac{4}{3} t . \boldsymbol{t}^{3 / 4}
$$

Deriving the normal age t_{0}, we substitute the causal variable normal time into the solution for $w=0$. Solving for unity time now gives us the Friedmann
oodel cosmological time to redshift where $w=1 / 3$.

$$
t_{\mathrm{o}}=\frac{4}{3} t \cdot \boldsymbol{t}_{\circ}
$$

$$
\breve{t}=\breve{t}_{0}(1+z)^{-2}
$$

We also introduce the following causal variation in he Planck natural unit of length, which is also elative to the natural time \boldsymbol{t}

$$
r_{\cdot(\boldsymbol{t})}=r_{\cdot}\left(\frac{\boldsymbol{t}}{\boldsymbol{t}_{0}}\right)^{1 / 3}
$$

Following the same procedure as before, we arriv

$$
\begin{gathered}
r_{. .}=r_{. \mathbf{t}_{0}^{-1 / 2}} \\
r=r_{. .} \int_{0}^{\boldsymbol{t}} \boldsymbol{t}^{1 / 2} d \boldsymbol{t}
\end{gathered}
$$

$$
r=\frac{2}{3} r_{. . \boldsymbol{t}}
$$

Age of the Universe

The cosmological background temperature relates to redshift and thus natural time as follows:
$T=T_{o}(1+z) \quad \frac{T}{T_{o}}=\left(\frac{\boldsymbol{t}_{o}}{\boldsymbol{t}}\right)^{1 / 2}$

Assuming the universe was the Planck temperature
at the Planck time, then the following is true:

$$
\boldsymbol{t}_{o}=\boldsymbol{T}_{o}^{-2}
$$

Converting the temperature of the CMB $(2.725 \mathrm{~K}$ $\pm 2 \mathrm{mK}$) into Planck units, allows us to calculate the

$$
\boldsymbol{T}_{\circ}=6.0584(49) \times 10^{-}
$$

$\boldsymbol{t}_{\mathrm{o}}=2.7245(44) \times 10^{60}$
e. $=\sqrt{\frac{h c^{5}}{G}}=$ S.T.
$T_{\text {. }}=4.49787(35) \times 10^{30} \mathrm{~K}$

Anderson Acceleration

 The natural expansion of space can be observed by he apparent change in the uniform radial motio$$
\begin{aligned}
& \mathbf{a}=\frac{d}{d \boldsymbol{t}} \sqrt{\frac{\boldsymbol{t}_{\mathrm{o}}-\boldsymbol{t}}{\boldsymbol{t}_{0}}} \\
& \mathbf{a}=-\frac{1}{2 \sqrt{\boldsymbol{t}_{(}\left(\boldsymbol{t}_{\mathrm{o}}-\boldsymbol{t}\right)}}
\end{aligned}
$$

For $\boldsymbol{t} \ll \boldsymbol{t}$, the body should exhibit an approximate apparent acceleration (towards the observer) of:

$$
\mathbf{a} \approx-1 / 2 \boldsymbol{t}
$$

easurement to and from the body doubles the equivalent the causal constant Planck Acceleration a

$$
a_{. .}=a_{.} \mathbf{t}_{\circ}^{-1}=8.143(13) \times 10^{-8} \mathrm{~cm} / \mathrm{s}
$$

Special Relativity

Relative to a stationary observer, a second observe the choice to move through either space or time; for every temporal step, the second observer travels either one cell spatially, or one cell causally.
For the stationary observer, the causal distance \boldsymbol{t}_{C} is he same as the temporal distance \boldsymbol{t}_{T} A spacia distance \boldsymbol{t}_{s}, traveled at an equivalent velocity of $\boldsymbol{t}_{\mathbf{t}} \boldsymbol{t}_{T}$ by the second observer, shortens the causal distance and thus results in a causal time dilation. ythagorus, and if the causal distance is related to he temporal distance with a scale factor $1<\Gamma<\infty$, hen the result is identical to Einstien's Special heory of Relativity. The subtle difference here is that he dilation is a shortening of causality; the equal - they both remain in the same present.

Expansion of Space

e will consider the propagation of an electronagnetic wave against a varying Planck scale. The
change in the natural scale factor is related to the emitted and received wavelengths as follows:

$$
\begin{aligned}
\lambda_{e n} & =r . \boldsymbol{t}^{1 / 2} \boldsymbol{R}_{\text {then }} \\
& =r \cdot \boldsymbol{R}
\end{aligned}
$$

Determining the redshift relation of above leads the realization that there is no causal change in the $z=\left(\lambda_{\text {rec }}-\lambda_{\text {en }}\right) / \lambda^{2}$

$$
1+z=\left(\frac{\boldsymbol{t}_{o}}{\boldsymbol{t}}\right)^{1 / 2} \frac{\boldsymbol{R}_{\text {noon }}}{\boldsymbol{R}_{\text {the }}}
$$

$$
\boldsymbol{R}_{\text {then }}=\boldsymbol{R}_{\text {nown }}
$$

Recession of Horizons

The cosmological horizon is equivalent to the Hubble sphere measured using unity space. The solutions are: $\quad w=\frac{1}{3} \quad \breve{r}_{r}=2 c \breve{t}_{0}$

$$
v=0 \quad \breve{r}_{0}=\frac{3}{2} c t_{0}
$$

Using the normal time solution for $w=0$, we onvert to normal space and determine the normal cosmological horizon as follows:

$$
r_{0}=\frac{2}{3} r_{0} \cdot \boldsymbol{t}_{0}=\frac{2}{3} \breve{r}_{0}
$$

This final normal radius relates to the Friedmann solution for $w=-1 / 3$. This gives a constant recession $q_{\mathrm{o}}=0$

$$
6=0
$$

Temporal Evolution

rom a causal point of view (when t_{o} is held static) he natural scale factor remains constant. However, rom a temporal point of view (when t_{o} increases), the natural scale factor does change. The overall cale factor (across far domain), increase at a rate of ne cell (unit of space) per step (unit of time). The following relation:

$\boldsymbol{R}=\boldsymbol{R}(1+z)^{-1}$

Since we forced the natural scale factor to relate to Since we forced the natural scale factor to relate to does represent one of the important underlying sumptions built into the Friedmann solution: The absolute concept of unity space. We can finally the system, which is equivalent to the Friedmann solution for $w=-1 / 3$:

$\boldsymbol{R}_{\mathrm{c}}=$

$\boldsymbol{t}=\boldsymbol{t}_{0}(1+z)^{-1}$
$\boldsymbol{t}=\boldsymbol{t}_{0}(1+z)^{-1}$

Fig 10 • Special Relativity • Effect on causal distance after spatial displacement: Starting at time \boldsymbol{t} a stationary observer arrives at time t^{\prime}

Fig 11 • Variable Planck Time • Example of the relative change in the value of the Planck Time against the natural time (the minconstant results in the unity time; the normal time is a third more.

Fig 12 - Expanding Space-Time - The (orange) unity-time assumption implies that a distance in time is equivalent to a distance in space. The (yellow) normal-time geometry is skewed relative to an

Observational Confirmation

he first year WMAP results determined the age of the exactly between the unity and normal ages predicted by the theory. From a thermodynamic point of view, the universe will appear to have the normal age. However, in terms of geometry, the unity age gives an equally valid age for the universe. Unless these considerations are all somewhere between the normal and unity ages.
fall Since the beginning of 1980, a team led by John Anders at the Jet Propulsion Laboratory, observed an apparent weak, long range deceleration in four different space obes. A detailed analysis of ranging data from Pioneer $8.74 \pm 1.33) \times 10^{-8} \mathrm{~cm} / \mathrm{s}^{2}$, directed towards the sun. equates to a change of less than one mile per hour per $171 / 2$ years. This tiny, but significant observation is in
direct concordance with the prediction of the theory.

