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Planck Natural Units

These two units are treated as the absolute mini-
mum possible divisions of both space and time.  
Dividing a distance in space or duration of time by 
their respective units, results in a dimensionless 
natural number, represented in bold type below:
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Note:  As in Planck's original proposal, we use the Planck constant h, instead 
of the Dirac constant ħ.  We use standard cosmological units for time (Billions 
of Years) and distance (Megaparsecs = parsecs per kiloyear * gigayear)

In 1899, Max Planck proposed a system of Natural 
Units, where the units of time t● and distance x● can 
be defined in the following way:
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When defining distances from an observer, we will 
use a causal radius, using twice the distance unit x●:
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Another type of Planck Natural unit represents the 
absolute maximum; an example of which are the 
units of velocity and acceleration.  Dividing a 
velocity or acceleration by their respective units 
results in a dimensionless unit fraction, also 
represented similarly in bold type below:

  xr 2

cv 




a
a

a



  t

va

Cosmological Models
We will consider the Friedmann cosmological 
model – homogeneous, isotropic universe, filled 
with a single perfect fluid as defined  by  an 
equation of state as follows:

The parameter w is a constant and will be used in 
determining the cosmological time t relative to 
redshift z, and the radius of the Hubble sphere rc.
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3

We will also state the equations for the deceleration 
parameter q° and radius of the particle horizon rH.
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The universe is matter-dominated when w=0, and 
has the cosmological time to redshift relation:
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However, due to an assumption in the Friedmann 
model, the above relation represents a composite 
time function, which we will refer to as normal 
time.  The typical assumption of a constant, 
unchanging time function, is referred to as unity 
time.  We will demonstrate this function by simply 
integrating unity over an interval of natural time t.
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The flat U above the t indicates unity time.  Here the 
Planck natural unit of time is treated as a constant at 
all natural times.  Note the unity-time age of the 
universe is simply:
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Causal Variable Planck Scale
We will introduce the following causal variation in 
the Planck natural unit of time, relative to the 
natural time t.

Separating the causal constant t●●, we integrate from 
the origin 0 to the natural time and calculate the 
normal time t.

Deriving the normal age t○, we substitute the causal-
variable normal time into the solution for w=0.  
Solving for unity time now gives us the Friedmann 
model cosmological time to redshift where w=⅓.
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We also introduce the following causal variation in 
the Planck natural unit of length, which is also 
relative to the natural time t.

Following the same procedure as before, we arrive 
at the normal radius r for a cosmological horizon.
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Expansion of Space
We will consider the propagation of an electro-
magnetic wave against a varying Planck scale.  The 
change in the natural scale factor is related to the 
emitted and received wavelengths as follows:

Determining the redshift relation of above leads to 
the realization that there is no causal change in the  
natural scale factor.
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Recession of Horizons
The cosmological horizon is equivalent to the 
Hubble sphere measured using unity space.  The 
unity  radius for the following two Friedmann 
solutions are:
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Using the normal time solution for w=0, we 
convert to normal space and determine the normal 
cosmological horizon as follows:
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This final normal radius relates to the Friedmann 
solution for w=−⅓.  This gives a constant recession 
velocity of c, and an infinite particle horizon rH:
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Temporal Evolution
From a causal point of view (when t○ is held static), 
the natural scale factor remains constant. However, 
from a temporal point of view (when t○ increases), 
the natural scale factor does change.  The overall 
scale factor (across far domain), increase at a rate of 
one cell (unit of space) per step (unit of time).  The 
scale factor is typically related to redshift using the 
following relation:

  11  zRR

  11  ztt

Since we forced the natural scale factor to relate to 
redshift, the relation is not entirely valid. However, 
it does represent one of the important underlying 
assumptions built into the Friedmann solution: The 
absolute concept of unity space.  We can finally 
state the temporal evolution of the system, which is 
equivalent to the Friedmann solution for w=−⅓: 
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Age of the Universe
The cosmological background temperature relates 
to redshift and thus natural time as follows:

Assuming the universe was the Planck temperature 
at the Planck time, then the following is true:
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Converting the temperature of the CMB (2.725K 
±2mK) into Planck units, allows us to calculate the 
age of the universe in natural, unity & normal time:
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Temperature and Entropy
The natural entropy of a black hole is equal to the 
natural area of it's event horizon.  We define the 
Planck Natural Unit of area as the surface area of a 
sphere of the Planck radius, and find the Planck 
entropy S●:

Planck's original proposal used the Boltzmann 
constant kB as the Planck Natural Unit of entropy.  
However, the correct unit above gives us a Planck 
Natural Unit of temperature T● as follows:
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Anderson Acceleration
The natural expansion of space can be observed by 
the apparent change in the uniform radial motion 
(acceleration) of a body using Doppler ranging:
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For t<<t○, the body should exhibit an approximate 
apparent acceleration (towards the observer) of:

Measurement to and from the body doubles the 
acceleration above and the final result is equivalent 
to the causal constant Planck Acceleration a●●:

Observational Confirmation
The first year WMAP results determined the age of the 
universe to be 13.7(2) billion years.  This lies almost 
exactly between the unity and normal ages predicted by 
the theory.  From a thermodynamic point of view, the 
universe will appear to have the normal age.  However, in 
terms of geometry, the unity age gives an equally valid 
age for the universe.  Unless these considerations are 
taken into account, then the observed age will most likely 
fall somewhere between the normal and unity ages.
Since the beginning of 1980, a team led by John Anderson 
at the Jet Propulsion Laboratory, observed an apparent 
weak, long range deceleration in four different space 
probes.  A detailed analysis of ranging data from Pioneer 
10 and 11 measured an anomalous acceleration of 
(8.74±1.33)×10-8 cm/s2, directed towards the sun.  This 
equates to a change of less than one mile per hour per 
17½ years.  This tiny, but significant observation is in 
direct concordance with the prediction of the theory.
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Fig 10  •  Special Relativity  •  Effect on causal distance after spatial 
displacement:  Starting at time t, a stationary observer arrives at time 
t○.  An observer, spatially displaced by tS, arrives at time t´○.

Fig 11  •  Variable Planck Time  •  Example of the relative change 
in the value of the Planck Time against the natural time (the min-
imum natural time t●=1).  Keeping the computational throughput 
constant results in the unity time; the normal time is a third more.

Fig 12  •  Expanding Space-Time  •  The (orange) unity-time 
assumption implies that a distance in time is equivalent to a distance 
in space.  The (yellow) normal-time geometry is skewed relative to an 
observation from the present age of the universe.

Fig 7, 8 & 9  •  Causal Behavior and Time Dilation   •  Fig 1 is 
redrawn to emphasize the causal behavior of the model.  The real 
domain (diagonal yellow) now appears to travel by one cell per step.  
This rate of causality is show to change (dark yellow), first (Fig 8, 
left) from the point of view of a moving observer and second (Fig 9, 
right) from the point of view of a stationary observer.

Special Relativity
Relative to a stationary observer, a second observer 
has the choice to move through either space or 
time;  for every temporal step, the second observer 
travels either one cell spatially, or one cell causally.  
For the stationary observer, the causal distance tC is 
the same as the temporal distance tT.  A spacial 
distance tS, traveled at an equivalent velocity of 
v=tS/tT by the second observer, shortens the causal 
distance and thus results in a causal time dilation.  
The size of the dilation is calculated using simple 
Pythagorus, and if the causal distance is related to 
the temporal distance with a scale factor 1<Γ<∞, 
then the result is identical to Einstien's Special 
Theory of Relativity.  The subtle difference here is 
that the dilation is a shortening of causality; the 
temporal distance traveled by both observers is 
equal – they both remain in the same present.
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