
E. Crawley and B. Koo © MIT1 2004-4-23

A New Kind of Language for Complex
Engineering Systems:

Case Study: NASA’s Apollo Program

Benjamin Koo
Edward F. Crawley

Engineering Systems Division
Department of Aeronautical and Astronautical Engineering

NKS 2004

E. Crawley and B. Koo © MIT2 2004-4-23

Architecting in Engineering Systems

• One Grand Challenge in Engineering Systems:
– Assessing Very Large Scale engineering decisions early enough with

meaningful model resolutions and abstraction levels

– Architects face numerous options based on possible combinations and
permutations with insufficient computational power

• Need to integrate multiple domains of knowledge at meaningful levels of
abstraction and resolution
– By applying the Principle of Computational Equivalence to translate between

domain models

– Using a generalized version of Wolfram Automata: Object-Process Network
(OPN)

• Applying NKS to NASA’s Apollo Mission:
– Wolfram’s automata (a simple language) can be mapped onto multiple

abstraction levels based on the Principle of Computational
Equivalence

– NASA’s Apollo mission is revisited to to show that NKS can help
assess critical decisions at multiple technical levels

E. Crawley and B. Koo © MIT3 2004-4-23

Architecting as Language Manipulation

• The Principle of Computational Equivalence states that
all physical processes can be mapped onto equivalent
“languages”
– Computer scientists often define various kinds of “machines” as

“languages” or “automata”

• All domain-specific models must be built on a common
set of linguistic primitives in order to ensure consistency
– Choice of vocabulary embodied in OBJECTS with their

respective range of admissible states define the variability in a
system

– Grammatical rules are PROCESSES that capture the
relationships between objects (as conditional probability
functions) can reduce system complexity

– Vocabulary arranged by Grammatical Rules creates a
NETWORK

E. Crawley and B. Koo © MIT4 2004-4-23

Language: the medium of interactions

• Interactions between subsystems requires translation
between domain-specific languages

• System architects must share a global language or
translate between local/domain-specific languages

• All domain-specific models must be built on a common
set of linguistic primitives in order to ensure
consistency and composability

Operational
System

Bi-directional
Influencing

Development
System

Operational
Assessing Development

Assessing

Program-Level
System

Language(s) of
Technologists

Language(s) of
Operators

Language(s) of
Decision Makers

E. Crawley and B. Koo © MIT5 2004-4-23

Languages based on “Simple
Programs”

• Wolfram Automata
– A series of interactive machines that follow one rule

to perform Turing computable tasks

• Languages based on a “simple kernel”
– Mathematica

• Multi-Paradigm Programming Language

• Meta-Language that subsumes multiple
programming paradigms

– Modelica

• A visual object-oriented language for physical
systems based on Mathematica’s runtime engine

E. Crawley and B. Koo © MIT6 2004-4-23

Variability in Cell-State Permutation

• Order sensitive: color permutation at initial row

• The vertical dimension is time

• A common vocabulary and one rule family

Discrete Space

Time

p(t=0) q(t=0) r(t=0)

Wolfram
Rule

q(t=1)

€

rule30 : p⊗ (q∨ r)
rule90 : p⊗ r
rule110 : ((¬p)∧q∧ r)⊗ q⊗ r

Wolfram rules are highly composable

<cells, neighboring relations, initial condition, rule number>

• Cellular Automata is a visual programming language

E. Crawley and B. Koo © MIT7 2004-4-23

Simple Programs in Conditional
Probability Tables

• Wolfram Rules can also be encoded in Conditional Probability Tables

Where:
N: rule number (0..255)
p: left cell
q: middle cell
r: right cell

€

N ∈ {0,1,2...}
c = p × 4 + q × 2 + r

Pr(black,N) =mod(N −mod(N,2C)
2C

,2)

One generalized function for all 256
rules… (one alternative to NKS
p.648)

€

Pr(black | p,q,r,N = 30) =
0,{pqr}∈
1,{pqr}∈




Pr(white) =1−Pr(black)
{ , , , }

{ , , , }

E. Crawley and B. Koo © MIT8 2004-4-23

Variability in Cell-State Combination

• When time is ignored, a
combinatorial problem can be
formulated as a graph of
conditional probability tables, a.k.a.
Bayesian Belief Networks
(BBNs)

• BBNs can be thought of as
probabilistic automata

• Exact BBN solution is known to be
NP-hard, not suitable for large
graphs or dynamic problems

E. Crawley and B. Koo © MIT9 2004-4-23

OPN is a Simple Meta-language

• OPN allows non-technical users to construct domain-
specific languages
– Domain-specific Vocabulary (Objects)

• Local knowledge confines the space of combinatorial
possibility by carefully choosing the inclusion of variables and
their admissible value ranges

– Domain-specific Grammar (Processes)

• Local knowledge eliminates unnecessary permutation and
combinatorial possibilities

– Domain-specific language (Network)

• Humans and machines can incrementally edit the network
structure or the conditional probability table based on local
context and runtime experience

v1
Object

v2

Process

yes
Object1

no Process true
Object2

false

E. Crawley and B. Koo © MIT10 2004-4-23

Cellular Automata in Object-Process
Network

• Object-Process Network (OPN) is an extension from
Dori’s (2002) Object-Process Methodology (OPM)
– A general purpose system description language (UML replacer)

• Cells as Objects
– Each object can have two or more states

• Rules as Functions (Processes)
– Each rule is specified by a unique instance of Conditional

Probability Table/Function

E. Crawley and B. Koo © MIT11 2004-4-23

OPN subsumes 4 languages

Concepts

Languages

Operand

Operator

Runtime
Engine

Application
Domains

Temporal
Scale

Semantic
Metaphors

Relationship

System
Dynamics

Coloured
Petri-Net

Probabilistic
Network

Cellular
Automata

Object-Process
Network

v1
Object

v2

Process

System
Description/
Simulation

Natural Science
Pattern Generation

Rule number,
Cell Layout

State

Conditional
Probability Tables

Reasoning about
State-Space
Combination

€

p
Transition

Place

Place + Coloured tokens

P1 T1 P2

Pre-condition

Post-condition

Discrete Event
Modeling

Stock

flow

Embedded in
arrows

Physical System
Modeling/Decision
Support

Synchronous
Rule Firing

Numerical
Integration
Engine

Event
Scheduling
Engine

Belief
Propagation
Algorithms

S-Expression
Interpreter

Synchronized
Time Steps

Infinitesimal
Time Steps

Approximation of
multiple scales

Asynchronous
Time Steps

Time-
independent
Memory-less

Interactive
Systems

Dynamics of
Analog Signals

Symbolic
Knowledge

Dynamics of
Messages

Causal
Structures

Direction of
Dependency

E. Crawley and B. Koo © MIT12 2004-4-23

Can one language help reason-through a
binary decision in the Apollo Program?

• A highly public architectural decision
– Tremendous impact on downstream developmental activities

• How did the decision makers reason through the
decision with incrementally available knowledge?

Earth Orbit Rendezvous (EOR) Lunar Orbit Rendezvous (LOR)

docking

launching

or ?

E. Crawley and B. Koo © MIT13 2004-4-23

Apollo Funding Breakdown

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

3,500,000

1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973

Year

th
o

u
sa

n
d

s
o

f
d

o
ll
a
rs

Impact of LOR Architectural Decision

LOR decision reached: June 7th, 1962 $160M, 0.82% of total budget $19.4B

E. Crawley and B. Koo © MIT14 2004-4-23

Science in the LOR vs. EOR Decision:
Sequence and Combination Matters

• How to enumerate all possible itineraries?
– Space of trajectories must include sequence info.

• How to assess variable interactions over multiple
knowledge domains?
– Space of technical options includes a large

combination of possibilities

• How to inform stakeholders about decisions with
comprehensive contextual data?
– The interactions between the two kinds of

computational complexity, sequence and
combination, must be coherently organized in a
unified representational scheme, namely a language

E. Crawley and B. Koo © MIT15 2004-4-23

Manual representation and
enumeration of trajectory options?

Planetary Arrival - 2 Craft - Joined Initially, Joined
Finally

Super-orbital Orbital Entry De-orbit Direct Descent

Planetary Arrival - 1 craft

• Consider the trip as four planetary encounters (Earth depart, moon arrive, etc)
• Each encounter has numerous permutations of objects and processes

Super-orbital

Orbital Entry

Orbit to Landing

Direct Descent

Super-orbital Orbital Entry Orbit to Landing Direct Descent

Super-orbital

Orbital Entry

Orbit to Landing

Direct Descent

Planetary Arrival - 2 Craft - Joined Initially, Separated
Finally

Super-orbital Orbital Entry Orbit to Landing Direct Descent

E. Crawley and B. Koo © MIT16 2004-4-23

How to represent and enumerate
trajectory options systematically?

• Use a finite state automaton to generate all possible
mission architectures
– Repeatable Motion Primitives (“Trim” conditions)

• Constant in control setting, configuration
– Finite-Time Motion Primitives (“Maneuvers”)

• Finite time transition between two Repeatable Motions

Orbit Attaining

Transiting

Orbit Entering

Orbit Departing

“Trim
Trajectory”

Surface

Orbit

Frazzoli 2001

De-Orbiting
Direct
 Ascent

Direct Decent

Orbiting

A “language” for describing all
possible single craft itineraries

E. Crawley and B. Koo © MIT17 2004-4-23

Generator of Mission Architectures
Maneuvering “Trim” conditionssteady state steady state“Trim” conditions

E. Crawley and B. Koo © MIT18 2004-4-23

Demo

E. Crawley and B. Koo © MIT19 2004-4-23

Summary

• Large Scale Engineering Decisions need a New Kind of
Language
– As systems become more complex, a simpler yet unifying

language is needed to deal with the two essential sources of
computational complexity (permutation and combination)

– Existing computable languages can be simplified or emulated
using a unifying meta-language, Object-Process Network

• Object-Process Network is a user-friendly meta-
language that allows a wide range of users to create
intuitive, domain-specific, yet efficient languages
– Languages derived from OPN can be composed into a unified

computational model to assess the interactive effects of
subsystems across many levels of abstraction and model
resolutions

E. Crawley and B. Koo © MIT20 2004-4-23

Acknowledgements

• Dr. Robert Seamans for his generous time and oral history that shed
light on Apollo’s landmark decisions

• Dr. Raymond Leopold for his insights into the design of Iridium
Satellite systems and how simple rule tables can be used to
construct very complex interactive systems

• Mr. Russ Wertenberg from NASA for his insights into the socio-
techno dynamics in Space Programs

• Thanks to Christopher Fry at http://www.clearmethods.com for his
implementation of the OPN runtime engine using the Water
Programming Language

• Mr. Qiu Yilin for his original concepts in evolvable software systems

• Prof. Paul Carlile for his contribution in using boundary objects as a
common currency for socio-technical system interactions

• Dr. Geilson Loureiro, Karen Marais, A-P Hurd for their respective
intellectual contribution and technical reviews of this presentation.

