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Architecting in Engineering Systems

* One Grand Challenge in Engineering Systems:

— Assessing Very Large Scale engineering decisions early enough with
meaningful model resolutions and abstraction levels

— Architects face numerous options based on possible combinations and
permutations with insufficient computational power

* Need to integrate multiple domains of knowledge at meaningful levels of
abstraction and resolution

— By applying the Principle of Computational Equivalence to translate between
domain models

— Using a generalized version of Wolfram Automata: Object-Process Network
(OPN)
*  Applying NKS to NASA's Apollo Mission:

— Wolfram’s automata (a simple language) can be mapped onto multiple
abstraction levels based on the Principle of Computational
Equivalence

— NASA'’s Apollo mission is revisited to to show that NKS can help
assess critical decisions at multiple technical levels
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Architecting as Language Manipulation

« The Principle of Computational Equivalence states that
all physical processes can be mapped onto equivalent
“languages”

— Computer scientists often define various kinds of “machines” as
“languages” or “automata”

 All domain-specific models must be built on a common

set of linguistic primitives in order to ensure consistency

— Choice of vocabulary embodied in OBJECTS with their
respective range of admissible states define the variability in a
system

— Grammatical rules are PROCESSES that capture the
relationships between objects (as conditional probability
functions) can reduce system complexity

— Vocabulary arranged by Grammatical Rules creates a
NETWORK
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Language: the medlm of interactions

' * Language(s) of
. Decision Makers

Program-Level
System

Language(s) of Operational Bi-directional Development Language(s) of
s i s -
Operators ystem influencing ystem Technologists

 Interactions between subsystems requires translation
between domain-specific languages

« System architects must share a global language or
translate between local/domain-specific languages

 All domain-specific models must be built on a common
set of linguistic primitives in order to ensure
consistency and composability
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Languages based on “Simple
Programs”
* Wolfram Automata
— A series of interactive machines that follow one rule
to perform Turing computable tasks
» Languages based on a “simple kernel”
— Mathematica
- Multi-Paradigm Programming Language

- Meta-Language that subsumes multiple
programming paradigms

— Modelica

* A visual object-oriented language for physical
systems based on Mathematica's runtime engine
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Simple Programs in Conditional
Probability Tables

«  Wolfram Rules can also be encoded in Conditional Probability Tables
0,{pgr} € {mm, m unm, I}

Pr(blaCk |p,q,r9N = 30) = 1,{pqr} e {lj], (ol ,[.] , | h }

. Where:
Pr(Whlte) =1- Pr(black) N: rule number (0..255)
: left cell
One generalized fum_:tion for all 256 2: m(je_ddl:ecell
rules... (one alternative to NKS r: right cell

p.648)

N €{0,1,2...}
c=px4+gx2+r

N —mod(N,2)
¢

Pr(black,N) = mod(
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Variability in Cell-State Combination

™ Edit Conditional Probabilities

 When time is ignored, a

combinatorial problem can be TER o - ~
formulated as a graph of o 02 0.8
conditional probability tables, a.k.a. =
Bayesian Belief Networks

 BBNSs can be thought of as +
probabilistic automata +

Sprinkler ) Fte_:!n
— ==l

- Exact BBN solution is known to be == A
NP-hard, not suitable for large |
graphs or dynamic problems +

Grass Maoisturizing

WetGrass
[wet] [ary)

e 35
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OPN is a Simple Meta-language

* OPN allows non-technical users to construct domain-
specific languages
P : J g ) Object
— Domain-specific Vocabulary (Objects) vi V2
 Local knowledge confines the space of combinatorial

possibility by carefully choosing the inclusion of variables and
their admissible value ranges

— Domain-specific Grammar (Processes) @

- Local knowledge eliminates unnecessary permutation and
combinatorial possibilities

— Domain-specific language (Network) |5 s
* Humans and machines can incrementally edit the network

structure or the conditional probability table based on local
context and runtime experience
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Cellular Automata in Object-Process
Network

* Object-Process Network (OPN) is an extension from
Dori’s (2002) Object-Process Methodology (OPM)

— A general purpose system description language (UML replacer)
* Cells as Objects

— Each object can have two or more states
* Rules as Functions (Processes)

— Each rule is specified by a unique instance of Conditional
Probability Table/Function

Left Most Cell {0 Left Cell tD Center_Cell_t0 Right_Cell_t0 Right Most_Cell t0
Eﬂ_ - | Ql 1| 0|1 01 0|1

1w \m:n * /\<ma* Xocﬁ * /um
Rule_30_a Rule_30 Rule_30_b

Left Cell_t1 Center_Cell_t1 Right Cell_t1
o] (1] 1] [o][1

0 100 0 100 0 100
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OPN subsumes 4 languages

Languages System | Coloured | Probabilistic | Cellular || Object-Process
Dynamics :  Petri-Net ; Network i Automata | Network
Concepts i i | |
Operand Ej | | ; |
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__________________________________________ e el
| | AL S]] sy
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Can one language help reason-through a
binary decision in the Apollo Program?

* A highly public architectural decision
— Tremendous impact on downstream developmental activities

* How did the decision makers reason through the
decision with incrementally available knowledge?
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LOR decision reached: June 7th, 1962

Impact of LOR Architectural Decision
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$160M, 0.82% of total budget $19.4B
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Science in the LOR vs. EOR Decision:
Sequence and Combination Matters

* How to enumerate all possible itineraries?
— Space of trajectories must include sequence info.

* How to assess variable interactions over multiple
knowledge domains?

— Space of technical options includes a large
combination of possibilities

 How to inform stakeholders about decisions with
comprehensive contextual data?

— The interactions between the two kinds of
computational complexity, sequence and
combination, must be coherently organized in a
unified representational scheme, namely a language
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Manual representation and
enumeration of trajectory options?

» Consider the trip as four planetary encounters (Earth depart, moon arrive, etc)
« Each encounter has numerous permutations of objects and processes

Planetary Arrival - 1 craft

Super-orbital Orbital Entry De-orbit Direct Descent

-_—~ 4
.//,_\/ ~ 7 ° ; (
i N ! ! \ ]
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Planetary Arrival - 2 Craft - Joined Initially, Joined Planetary Arrival - 2 Craft - Joined Initially, Separated

Finally Finally
Super-orbital Orbital Entry - Orbit to Landing Direct Descent Super-orbital Orbital Entry  Orbit to Landing Direct Descent
Super-orbital '\@/’“% Super-orbital .@
Orbital Entry R Orbital Entry N 0 7

Orbit to Landing 2 Orbit to Landing 2/ 2

Direct Descent W Direct Descent =
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How to represent and enumerate
trajectory options systematically?

« Use a finite state automaton to generate all possible
mission architectures
Motion Primitives (“Trim” conditions)
« Constant in control setting, configuration
— Finite-Time Motion Primitives ("Maneuvers”)
 Finite time transition between two Repeatable Motions

A “language” for describing all

possible single craft itineraries
Orbit Departing

Orbiting Transiting

“Trim
Trajectory”

Direct Decent

Direct
Ascent

. De-Orbiting
s Orbit '
T T
T, T 2‘ c/Mm Orbit Entering
M. Orbit Attainin
Surface
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Generator of Mission Architectures
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Summary

» Large Scale Engineering Decisions need a New Kind of
Language
— As systems become more complex, a simpler yet unifying

language is needed to deal with the two essential sources of
computational complexity (permutation and combination)

— Existing computable languages can be simplified or emulated
using a unifying meta-language, Object-Process Network
* Object-Process Network is a user-friendly meta-
language that allows a wide range of users to create
intuitive, domain-specific, yet efficient languages
— Languages derived from OPN can be composed into a unified
computational model to assess the inferactive effects of

subsystems across many levels of abstraction and model
resolutions
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