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Architecting in Engineering Systems

• One Grand Challenge in Engineering Systems:
– Assessing Very Large Scale engineering decisions early enough with

meaningful model resolutions and abstraction levels

– Architects face numerous options based on possible combinations and
permutations with insufficient computational power

• Need to integrate multiple domains of knowledge at meaningful levels of
abstraction and resolution
– By applying the Principle of Computational Equivalence to translate between

domain models

– Using a generalized version of Wolfram Automata: Object-Process Network
(OPN)

• Applying NKS to NASA’s Apollo Mission:
– Wolfram’s automata (a simple language) can be mapped onto multiple

abstraction levels based on the Principle of Computational
Equivalence

– NASA’s Apollo mission is revisited to to show that NKS can help
assess critical decisions at multiple technical levels
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Architecting as Language Manipulation

• The Principle of Computational Equivalence states that
all physical processes can be mapped onto equivalent
“languages”
– Computer scientists often define various kinds of “machines” as

“languages” or “automata”

• All domain-specific models must be built on a common
set of linguistic primitives in order to ensure consistency
– Choice of vocabulary embodied in OBJECTS with their

respective range of admissible states define the variability in a
system

– Grammatical rules are PROCESSES that capture the
relationships between objects (as conditional probability
functions) can reduce system complexity

– Vocabulary arranged by Grammatical Rules creates a
NETWORK
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Language: the medium of interactions

• Interactions between subsystems requires translation
between domain-specific languages

• System architects must share a global language or
translate between local/domain-specific languages

• All domain-specific models must be built on a common
set of linguistic primitives in order to ensure
consistency and composability
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Languages based on “Simple
Programs”

• Wolfram Automata
– A series of interactive machines that follow one rule

to perform Turing computable tasks

• Languages based on a “simple kernel”
– Mathematica

• Multi-Paradigm Programming Language

• Meta-Language that subsumes multiple
programming paradigms

– Modelica

• A visual object-oriented language for physical
systems based on Mathematica’s runtime engine
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Variability in Cell-State Permutation

• Order sensitive: color permutation at initial row

• The vertical dimension is time

• A common vocabulary and one rule family

Discrete Space

Time

p(t=0) q(t=0) r(t=0)

Wolfram 
Rule

q(t=1)

€ 

rule30 : p⊗ (q∨ r)
rule90 : p⊗ r
rule110 : ((¬p)∧q∧ r)⊗ q⊗ r

Wolfram rules are highly composable

<cells, neighboring relations, initial condition, rule number>

• Cellular Automata is a visual programming language
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Simple Programs in Conditional
Probability Tables

• Wolfram Rules can also be encoded in Conditional Probability Tables

Where:
N: rule number (0..255)
p: left cell
q: middle cell
r: right cell

€ 

N ∈ {0,1,2...}
c = p × 4 + q × 2 + r

Pr(black,N) =mod(N −mod(N,2C )
2C

,2)

One generalized function for all 256
rules… (one alternative to NKS
p.648)

€ 

Pr(black | p,q,r,N = 30) =
0,{pqr}∈
1,{pqr}∈
 
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 

Pr(white) =1−Pr(black)
{     ,      ,     ,      }

{     ,      ,     ,      }
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Variability in Cell-State Combination

• When time is ignored, a
combinatorial problem can be
formulated as a graph of
conditional probability tables, a.k.a.
Bayesian Belief Networks
(BBNs)

• BBNs can be thought of as
probabilistic automata

• Exact BBN solution is known to be
NP-hard, not suitable for large
graphs or dynamic problems
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OPN is a Simple Meta-language

• OPN allows non-technical users to construct domain-
specific languages
– Domain-specific Vocabulary (Objects)

• Local knowledge confines the space of combinatorial
possibility by carefully choosing the inclusion of variables and
their admissible value ranges

– Domain-specific Grammar (Processes)

• Local knowledge eliminates unnecessary permutation and
combinatorial possibilities

– Domain-specific language (Network)

• Humans and machines can incrementally edit the network
structure or the conditional probability table based on local
context and runtime experience
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Cellular Automata in Object-Process
Network

• Object-Process Network (OPN) is an extension from
Dori’s (2002) Object-Process Methodology (OPM)
– A general purpose system description language (UML replacer)

• Cells as Objects
– Each object can have two or more states

• Rules as Functions (Processes)
– Each rule is specified by a unique instance of Conditional

Probability Table/Function
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OPN subsumes 4 languages
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Can one language help reason-through a
binary decision in the Apollo Program?

• A highly public architectural decision
– Tremendous impact on downstream developmental activities

• How did the decision makers reason through the
decision with incrementally available knowledge?

Earth Orbit Rendezvous (EOR) Lunar Orbit Rendezvous (LOR)

docking

launching

or ?
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Apollo Funding Breakdown
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Impact of LOR Architectural Decision

LOR decision reached: June 7th, 1962 $160M, 0.82% of total budget $19.4B
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Science in the LOR vs. EOR Decision:
Sequence and Combination Matters

• How to enumerate all possible itineraries?
– Space of trajectories must include sequence info.

• How to assess variable interactions over multiple
knowledge domains?
– Space of technical options includes a large

combination of possibilities

• How to inform stakeholders about decisions with
comprehensive contextual data?
– The interactions between the two kinds of

computational complexity, sequence and
combination, must be coherently organized in a
unified representational scheme, namely a language
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Manual representation and
enumeration of trajectory options?

Planetary Arrival - 2 Craft - Joined Initially, Joined
Finally

Super-orbital Orbital Entry De-orbit Direct Descent

Planetary Arrival - 1 craft

• Consider the trip as four planetary encounters (Earth depart, moon arrive, etc)
• Each encounter has numerous permutations of objects and processes
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Orbit to Landing
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Super-orbital Orbital Entry Orbit to Landing Direct Descent
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Planetary Arrival - 2 Craft - Joined Initially, Separated
Finally

Super-orbital Orbital Entry Orbit to Landing Direct Descent
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How to represent and enumerate
trajectory options systematically?

• Use a finite state automaton to generate all possible
mission architectures
– Repeatable Motion Primitives (“Trim” conditions)

• Constant in control setting, configuration
– Finite-Time Motion Primitives (“Maneuvers”)

• Finite time transition between two Repeatable Motions

Orbit Attaining

Transiting

Orbit Entering

Orbit Departing

“Trim
Trajectory”

Surface

Orbit

Frazzoli 2001

De-Orbiting
Direct
 Ascent

Direct Decent

Orbiting

A “language” for describing all 
possible single craft itineraries
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Generator of Mission Architectures
Maneuvering “Trim” conditionssteady state steady state“Trim” conditions
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Demo
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Summary

• Large Scale Engineering Decisions need a New Kind of
Language
– As systems become more complex, a simpler yet unifying

language is needed to deal with the two essential sources of
computational complexity (permutation and combination)

– Existing computable languages can be simplified or emulated
using a unifying meta-language, Object-Process Network

• Object-Process Network is a user-friendly meta-
language that allows a wide range of users to create
intuitive, domain-specific, yet efficient languages
– Languages derived from OPN can be composed into a unified

computational model to assess the interactive effects of
subsystems across many levels of abstraction and model
resolutions
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