Cellular Automaton Performing Two-Coloring of Square Tiled Planes

Jiri Kroc**

"Helsinki School of Economics, Mikkeli, Finland \dagger University of West Bohemia, Plzen, The Czech Republic

Motto

It does not matter how good you are in it. The NATURE does it always better!

Outline

- Motivation
- Deterministic, two-colouring of square tiled planes with four neighbours
- Two-colouring in presence of three neighbours, a note
- The Penrose tiling - future work
- Future > towards the general rule
- Conclusions

Motivation

- The question is: "Could we construct a general deterministic rule performing fast colouring of tilings like the Penrose one?"
- The problem is studied on a regular square grid due to its simplicity (rem. mod (x+y))
- Could be the final algoritm used for the Penrose tiling?
- The three neighbour case as the way from the regular grid towards the Penrose case

Neighbourhoods

Rule B1 - vertical

- B1: If time\%4 = 0
- (a) and if the colour of $[-1,-1]$ is white, the colour of $[0,-1]$ is black, and $\mathbf{y} \% 2=0$ then colour of $[0,0]$ becomes white,
- (b) or if the colour of $[-1,-1]$ is black, the colour of $[0,-1]$ is white, and $\mathbf{y} \% 2=0$ then colour of $[0,0]$ becomes black.

Rule B2 - vertical

- B2: If time\%4 = 1
- (a) and if the colour of $[-1,-1]$ is white, the colour of $[0,-1]$ is black, and $\mathbf{y} \% 2=1$ then colour of $[0,0]$ becomes white,
- (b) or if the colour of $[-1,-1]$ is black, the colour of $[0,-1]$ is white, and $\mathbf{y} \% 2=1$ then colour of $[0,0]$ becomes black.

Neighbourhoods

Rule B3 - horizontal

- B3: If time\%4 = 2
- (a) and if the colour of $[-1,-1]$ is white, the colour of $[-1,0]$ is black, and $\mathbf{x} \% 2=0$ then colour of $[0,0]$ becomes white,
- (b) or if the colour of $[-1,-1]$ is black, the colour of $[-1,0]$ is white, and $\mathbf{x} \% 2=0$ then colour of $[0,0]$ becomes black.

Rule B4 - horizontal

- B4: If time $\% 4=3$
- (a) and if the colour of $[-1,-1]$ is white, the colour of $[-1,0]$ is black, and $\mathbf{x} \% 2=1$ then colour of $[0,0]$ becomes white,
- (b) or if the colour of $[-1,-1]$ is black, the colour of $[-1,0]$ is white, and $\mathbf{x} \% 2=1$ then colour of $[0,0]$ becomes black.

Neighbourhoods

Rule L1 - left edge

- L1: If time\%2 = 0
- (a) and if the colour of [0,-1] is black, and $\mathbf{y} \% 2=0$ then colour of $[0,0]$ becomes white,
- (b) or if the colour of $[0,-1]$ is white, and $\mathbf{y} \% 2=0$ then colour of $[0,0]$ becomes black.

Rule L2 - left edge

- L2: If time \%2 = 1
- (a) and if the colour of $[0,-1]$ is black, and $\mathbf{y} \% 2=1$ then colour of $[0,0]$ becomes white,
- (b) or if the colour of $[0,-1]$ is white, and $\mathbf{y} \% 2=1$ then colour of $[0,0]$ becomes black.

Neighbourhoods

Rule D1 - bottom edge

- D1: If time $\% 2=0$
- (a) and if the colour of $[-1,0]$ is black, and $\mathbf{x} \% 2=0$ then colour of $[0,0]$ becomes white,
- (b) or if the colour of $[-1,0]$ is white, and $\mathbf{x} \% 2=0$ then colour of $[0,0]$ becomes black.

Rule D2 - bottom edge

- D2: If time $\% 2=1$
- (a) and if the colour of $[-1,0]$ is black, and $\mathbf{x} \% 2=1$ then colour of $[0,0]$ becomes white,
- (b) or if the colour of [-1,0] is white, and $\mathbf{x} \% 2=1$ then colour of $[0,0]$ becomes black.

An initial configuration

> An random intial condition of the world having size 20×20 cells is provided here as a simple example.

Evolution sequence - detail

Evolution sequence - random

Antiphase separation border

The total simulation time is 195 steps in this case!
A substantial time increase.

Evolution sequence - seed

Evolution sequence - seed

Disorganization vs time

Evolution of the disorganization level. The total incompatibility is equal to one.

Conclusions

- Two thing are important to fulfill simultaneously:
- Find an efective rule
- The initial conditions of the simulation
- It is not enough to find just an efective rule!
- It could leads to a tremendeous computational load in more complicated cases than this simple one presented here!

Conclusions - continues

- It obvious from this that although there is a solution of the problem the enormous number of attempts is necessary to start the correct process
- Hence, the work from looking for a rule is shifted towards the problem with 'waiting time' for having good luck with correct initial conditions
- Exactly as THE NATURE does!

Additional information

- Contact addresses:
- E-mail address:
kroc@c-mail.cz
- Personal web page:
http//:www.c-mail.cz/kroc
- Mail:

Havlickova 482
33203 STAHLAVY
Czech Republic

