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Modern microprocessors are highly complex...

Transistors

@ Moore’s Law:
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@ Pentium 4 (42 million transist.)

@ Itanium 2 (410 million transist.)

@ A huge quantity of elements,
with complex interactions




...to increase performance

@ Performance = execution speed of a program

@ Varies along execution
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understanding/predicting how to increase microprocessor efficiency



...to increase performance

@ Performance = execution speed of a program

@ Varies along execution

bzip2 vpr
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10° instructions.

@ How to quantify/characterize this dynamics? = crucial for
understanding/predicting how to increase microprocessor efficiency

Our approach:

use methods from nonlinear time series analysis




Measurements

@ Execution of typical programs (SPEC benchmarks) by a typical
modern superscalar processor (e.g. Pentium 4).



Measurements

@ Execution of typical programs (SPEC benchmarks) by a typical
modern superscalar processor (e.g. Pentium 4).

Simultaneous measurements during execution:

@ number of instructions executed

£
during a clock cycle:ipc 2
o

@ miss fraction in L1 cache: L1
55 fractio
@ miss fraction in L2 cache: L2 Main Memory
(e.g. DRAM)

L1 & L2 miss rate = indices for memory usage efficiency (vanishing indices

denote highest efficiency)



Example 1. applu

(Nonlinear PDEs solver for fluid dyamics)



applu: General aspect
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applu: Details
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applu: Details

0.0 LN  a |

45 46 47 48 49 50
Billion Instructions

o REGULAR, PERIODIC DYNAMICS (limit cycle).

Also found for e.g. apsi (Pollutants air dispersion)



Example 2. bzip2

(File compression)






bzip2: Details
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@ Partly regular but much variability / aperiodicity



bzip2: Phase plan projections
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@ A clear “structure” (attractor?)



Attractor reconstruction: Principle

@ Aim: construct the attractor underlying the dynamics from a
single scalar time series.
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Attractor reconstruction: Principle

@ Aim: construct the attractor underlying the dynamics from a
single scalar time series.
@ Delay embedding:

X — Xk — (xkakar‘C’ “ee 1xk+(m—1)‘c)

eg.m=3,1=4
X, Xpsor
X [ J
0
o o ® 0,% o (xq. x4, X;)
® X, #
X
‘ k xk+-r

(), x5, %)
Xk

@ For adequately chosen m and T, the reconstructed (embedded)
attractor is (topologically) equivalent to the real dynamics
attractor [Takens (1981) Lecture Notes Math. 898:366]



Attractor dimension: Principle

[Grassberger & Procaccia (1983) Physica D 9:189]

@ Compute “Correlation sums”:

{Ufi@)(s— I Xi—X; )

P(P =1 j>i
=y 5
N

C(m,e)=

e If a strange attractor is present: C(m,g) o< P2 form >> D;.

e D, = (fractal) correlation dimension
e = scaling of C(m,€) = independent of m



Attractor dimension: Principle

[Grassberger & Procaccia (1983) Physica D 9:189]

@ Compute “Correlation sums”:

{Ufi@)(s— I Xi—X; )

P(P =1 j>i
=y 5
N

C(m,e)=

e If a strange attractor is present: C(m,g) o< P2 form >> D;.

e D, = (fractal) correlation dimension
e = scaling of C(m,€) = independent of m

@ Whereas, for a stochastic (random) time series: C(m, €) o €"
e = scaling of C(m,€) = depends on m



bzip2: Attractor dimension
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@ Presence of a clear scaling zone (where C(m, g) o €50t

@ Indicates the presence of a strange attractor (i.e. low dimensional
deterministic chaos).



bzip2: Sensitivity to initial conditions

Compute “stretching factors” [Kantz (1994) Phys. Lett. A185:177]
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bzip2: Sensitivity to initial conditions

Compute “stretching factors” [Kantz (1994) Phys. Lett. A185:177]
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” X+t — Xj+t H°< exp(xmaxt) = S(E,m,t) o< Mnaxt
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@ Presence of sensitivity to
initial conditions
(7\'max > O)

@ Another strong element in
favor of a chaotic
dynamics for bzip2
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Conclusion

@ Seems to result from chaotic dynamics

@ Anuax ~ 0.65 bit/average “orbit”
@ Comparable to textbook chaotic models (e.g. Réssler,

Amax = 0.78 bits/orbit).

@ Time series very difficult to predict.

@ Similar behavior observed for galgel (Fluid dynamics) or fma3d
(Finite elements for mechanics)




Example 3. vpr

(Node placements and routing in networks)






vpr: Details
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@ Irregularity confirmed



vpr: Phase plan projection
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@ Hardly structured



vpr: Attractor dimension
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@ No clear scaling zone
@ No evidence for a (low dimensional) attractor

@ Stochastic signal??



Conclusion

vpr:
@ Seems to originate from a non deterministic time series
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@ However, the underlying processes in the microprocessor are
fundamentally deterministic

@ How to discriminate stochastic/deterministic with long repetition
period?




Conclusion

vpr:
@ Seems to originate from a non deterministic time series

@ However, the underlying processes in the microprocessor are
fundamentally deterministic

@ How to discriminate stochastic/deterministic with long repetition
period?

@ Similar behaviors observed for art (Neural networks) or crafty
(Chess game)




Example (from NKS p.129)
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Simple “nested” recursion:
f)=f(fn=1))+f(n=2f(n=1)+1), f(1)=f(2)=1
Shown are fluctuations around the average trend 0.421%-816
@ Easy to generate complex (stochastic-like) series with simple
deterministic processes



To conclude
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@ Non chaotic, “stochastic-like” behaviors

@ Dynamics type of a program # correlated to simple
characteristics (e.g. floating-point vs integer-based codes...)

@ but rather to how microprocessor architecture (memory
hierarchy, branch predictors...) is used by the program.



Three dynamics types observed

@ Regular periodicity
@ Deterministic chaos
@ Non chaotic, “stochastic-like” behaviors

@ Dynamics type of a program # correlated to simple
characteristics (e.g. floating-point vs integer-based codes...)

@ but rather to how microprocessor architecture (memory
hierarchy, branch predictors...) is used by the program.

For further information/analysis:

@ Berry, Gracia Pérez & Temam (2006) CHAOS 16:013110
(arXiv:nlin.,AO/0506030)
@ www-rocqg.inria.fr/"berry



Why this complexity?



Hiding memory latency

@ The increase rate of the clock frequency is much larger than that
of memory accesses

@ The latency for memory access is thus always larger (currently,
hundreds of cycles for RAM access)

@ A myriad of mechanisms has been developed to “hide” this
caveat and increase performance:
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@ The increase rate of the clock frequency is much larger than that
of memory accesses

@ The latency for memory access is thus always larger (currently,
hundreds of cycles for RAM access)

@ A myriad of mechanisms has been developed to “hide” this
caveat and increase performance:
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Hiding memory latency

@ The increase rate of the clock frequency is much larger than that
of memory accesses

@ The latency for memory access is thus always larger (currently,
hundreds of cycles for RAM access)

@ A myriad of mechanisms has been developed to “hide” this
caveat and increase performance:
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Example: speculative execution
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Example: speculative execution

X=2
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X
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Example: speculative execution

@ speculative
execution (branch
predictor).

@ If prediction = true:

the memory
latency time has
been skipped
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Example: speculative execution

@ speculative
execution (branch
predictor).

@ If prediction = true:

the memory
latency time has
been skipped

@ If not: forget

speculative
execution results
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Example: speculative execution

@ speculative
execution (branch
predictor).

@ If prediction = true:

the memory
latency time has
been skipped

@ If not: forget
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execution results
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Performance can be history-dependent




So that:

@ Performance (number of instructions executed per time units) at a given
point depends on a huge quantity of architectural mechanisms,
that interact in a nonlinear fashion.

@ The state of each of these mechanisms at a given point cannot
be known precisely.

@ This property has been exploited to build random number
generators (Seznec & Sandrier, 2003).



Supplementary results for applu



applu: Phase plan projection
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applu: Phase plan projection
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@ Clear regular periodicity (limit cycle)
@ PERIODICAL PERFORMANCE OSCILLATIONS.




applu: Spectral analysis
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@ Clear periodic behavior.



Supplementary results for bzip2



bzip2: Spectral Analysis

@ Some peaks, but a very
"dense" structure, typical of
chaotic/stochastic signals
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bzip2: Spectral Analysis (2)
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bzip2: Spectral Analysis (2)
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bzip2: Spectral Analysis (2)
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B spectrum

@ Fractal series with long term
correlations
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Detrended Fluctuation Analysis: Principle

@ Principle [Peng et al. (1995) CHAOS 5:82 :
e Centering and integration: y; = ¥*_, [x; — (x)]
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Detrended Fluctuation Analysis: Principle

@ Principle [Peng et al. (1995) CHAOS 5:82 :
e Centering and integration: y; = ¥*_, [x; — (x)]
e The series is then cut in segments of size n instructions
Vi

Yk

0

Size n

e Fluctuations around the linear tendency:

Fn) = |5 L= wf?

@ For “fractal” time series: F (n) o< n®

@ o= 0.5: no correlation;

@ o > 0.5: “Fractal” time series with long term correlations;

@ Theoretically, o = (1 + B) /2 [Rangarajan & Ding (2000) PRE 61:4991 1.




bzip2: DFA
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bzip2: DFA

@ o~ 1.13 (compare to
(1+B)/2=1.15)

@ bzip2 = “fractal”
series with along
term correlations

Log F(n)

@ Correlations =
persistent
(large values are more

likely to occur after a

——T T T T T T T T T large value)



Recurrence plots (RPs): Principle

@ Thresholded RPs: [Eckmann et al. (1987) Europhysics Lett. 5:973]

e Qualitative tests for the presence of patterns and nonlinearity in
time series

e Build the distance matrix between each pair of points in the
embedded attractor, then threshold the distance:

Rij=0(0E& [|X;-X|) ij=1,...,p

where O(- -+ ): Heaviside step function

Qualitative graphical interpretation:

@ Diagonals: determinism
@ Isolated points: stochasticity
@ Interrupted diagonals + isolated points: chaos




Examples of RPs

Lorenz attractor
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bzip2: RPs

@ Scalar series: ipc; Embedding w/ m = 5 and Tt = 0.14 x 10°
instructions.
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bzip2: Poincaré sections

Poincaré sections (at minima):

@ Structured map

@ Mainly mono-dimensional

@ Coherent w/ a strange
attractor
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bzip2: Surrogate data tests

significance

@ Same conclusion raised when applied to isolated bzip2 regions



Supplementary results for vpr



@ Series: ipc; Embedding w/ m = 4 and t = 4.16 x 10? instructions.
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@ Series: ipc; Embedding w/ m = 4 and t = 4.16 x 10? instructions.
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@ Low determinism
(lowly structured)

@ Close to what is
expected for a white
noise
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Non chaotic series. But stochastic?



vpr: Poincaré sections

Poincaré sections (at minima):
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@ Stochasticity?
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vpr: Spectral Analysis + DFA
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@ Bad linear regression, but o0 = 0.86 (compare w/ (1+B)/2 = 0.93)
@ vpr could also be “fractal”



vpr: Surrogate data tests

Surrogates have same Fourrier amplitudes and value distribution as real data.

Nonlinearity tested using a simple nonlinearity predictor and time reversal assymetry statistics.
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@ The null hypothesis that the IPC trace is due to a stationary, possibly
rescaled, linear Gaussian random process could not be rejected (95 %
level of significance)

@ Another point in favor of a stochastic process



Delay embedding of strange attractors



An example of attractor embedding: Lorenz
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An example of attractor embedding: Lorenz

X =0 -X) Y=-XZ+rX-Y Z=XY-bZ

X(k)
T
X(k)

@ Topology conserved w/ m =3, T = 0.05



