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Cellular Automata (CA)

- Why are cellular automata interesting?
- What do we want from the study of CA?

- Why should an alternative be introduced?



Using Graphs

-Unifying complex networks and complex dynamics
-Well-developed mathematical framework
-More general modeling of complex systems



A dynamic state network (DSN) 1s defined as a pair (G,R).
Let the graph G = (V,E) comprise set of vertices V and
edges E. Every v.1n V contains a state, t. Letarule R be

defined as a mapping from neigborhoods of radius r, N, to
a states .



Implementation 1ssues

-Nonuniform neighborhoods
-Redefining rules
-Qualifying and quantifying complexity



Redefining rules

-Uniform neighborhoods are not guaranteed

-To work around this, let us define the relative total-
istic rule. Instead of mapping a total to a state, we
can map the ratio between the total and Nt = toa
state.



Qualifying and quantifying complexity

-Two types of complexity: structural and behavioral
-Structural complexity deals with the topology of the
DSN

-Behavioral complexity concerns the temporal evolution
of the DSN



Entropy as a measure of complexity

-2, p log p taken over an arbitrary probability distribution
produced by counting frequencies of elements

-In a cellular automata, frequencies are taken over neigh-
borhoods

-Generalizing entropy from cellular automata to DSNs 1s
not straightforward



Isomorphism entropy

-Direct generalization of CA entropy

-Counting neighborhoods requires equivalence classes for
graph neighborhoods

-Use 1somorphism classes, where two graphs, G and H,
are 1somorphic 1f there exists a byjection . V(G) — V(H),
such that (u,v) 1s 1n E(G) 1ff (f{u),f{v)) 1s in E(H) and

G (u) = H(f{u))



[somorphism Entropy (cont’d)

-For any non vertex-transitive graph, the minimum 1somor-
phism entropy 1s not necessarily zero

-For some graphs, the maximum 1somorphism entropy 1s
equal to the minimum entropy

-For graphs with a small diameter, neighborhood sizes
grow very quickly with radius

-Isomorphism 1s not known to be 1n P.



Arc entropy

-Entropy 1s taken over all arcs of length g

-An arc 1s an acyclic, nonempty subgraph of G whose verti-
ces v,..v_are connected by edges {(v,v. )}

-Two arcs are equal it G (v)) = G (u,) for all 1



Arc entropy (cont’d)

-Solves some of the problems with 1somorphism entropy
-Loses some of the structural information about a graph 1n
reducing a neighborhood to one-dimensional arcs

-Runs 1n O(n!/(n-g+1)!) 1in the worst case, a complete
graph
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Relative “Game of Life” rule

Current state Ratio,p, of alive neighbors [Next state
alive 0<=p<0.25 dead
alive 0.25<=p<.5 alive
alive 0.5<=p<=1.0 dead
dead 0 <=p<0.375 dead
dead 0.375 <=p <0.5 alive
dead 0.5<=p<1.0 dead




Comparing the new entropies to the old

Comparisan of network entropies on a regular grid for the game of life Comparision of netwark entropies on regular 20 grids with the game of life
Tr E2 Tr +
" Arc entropy, length = 2 - Arc entropy, length = 2
- |gomorphism entropy, radius = 1 o+ |gsamorphism entropy, radius = 1
o Lb--- Cellular autamata entropy, radius = 1 ~owccCellular automata entropy, radius = 1
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arc entropy

Comparing power law graph

F'referential attachment graphs run on the game of life

Yertex duplication graphs run on the game of life
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Comparing exponential graphs: arc entropy

arc entropy
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Grd exponential versus ring exponential graph on the game of life
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Isomorphism entropy
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Conclusions

-The DSN provides a novel, powerful framework for both
the empirical and theoretical investigation of complex sys-
tems

-We have introduced entropy measures on the DSN anala-
gous to those on their CA counterparts

-Preliminary results indicate that the topology of the net-
work on which a rule 1s run materially affects the behavior
of the DSN.

-Potential correspondence between particular graph proper-
ties and DSN behavior.



Future Work

-Expanding framework to include directed, propertied
edges

-Extensive, 1f not comprehensive, exploration of the DSN
rule space

-Concretize the relationship between the behavior of the
DSN, 1ts topological properties, and the rules placed upon
it.

-Develop new methods of analysis that take advantage of
the explicit structure of conditionality in the DSN


















