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TEBJ O ~ A L  LOGICor STHEZOLIO 
Volume 12, Number 1, March 1947 

RECURSIVE UNSOLVABILITY OF A PROBLEM OF THUE 
EMIL L. POST 

Alonzo Church suggested to the writer that a certain problem of Thue [611 
might be proved unsolvable by the methods of [5]. We proceed to prove the 
problem recursively unsolvable, that is, unsolvable in the sense of Church [I], 
but by a method meeting the special needs of the problem. 

Thue's (general) problem is the following. Given a finite set of symbols al , 
a2 , . . .  , a, ,we consider arbitrary stm'ngs (Zeichenreihen) on those symbols, 
that is, rows of symbols each of which is in the given set. Null strings are in- 
cluded. We further have given a finite set of pairs of corresponding strings on 
the aiJs, (A1 ,B1), (A2 ,Bz), . . . , (A, ,B,). A string R is said to be a subslring 
of a string S if S can be written in the form URV, that is, S consists of the letters, 
in order of occurrence, of some string U , followed by the letters of l?, followed by 
the letters of some string V. Strings P and Q are then said to be similar if Q 
can be obtained from P by replacing a substring Ai or Bi of P by its correspond- 
ent Bi ,Ai . Clearly, if P and Q are similar, Q and P are similar. Fiilally, P 
and Q are said to be equivalent if there is a finite set R1, R2 , . . . ,R, of strings on 
al , . . . , a, such that in the sequence of strings P, R1 , R2 , . . . ,R, , Q each 
string except the last is similar to the following string. I t  is readily seen that 
this relat,ion between strings on al , . . . , a, , is indeed an equivalence relation. 
Thue's problem is then the problem of determining for arbitrarily given strings 
A, B on al , . . . ,a, whether, or no, A and B are equivalent. 

This problem, a t  least for the writer, is more readily placed if i t  is restated 
in terms of a special form of the canonical systems of [3]. In that notation, 
strings C and D are similar if D can be obtained from C by applying to C one 
of the following operations: 

PAi& produces PBiQ, PBiQ produces PAiQ, i = 1, 2, - . ,n. (1) 

In  these operations the operational variables P, Q represent arbitrary strings. 
Strings A and B will then be equivalent if B can be obtained from A by starting 
with A, and applying in turn a finite sequence of operations (I). That is, A 
and B are equivalent if B is an assertion in the "canonical systemw2 with primi- 
tive assertion A and operations (1). Thue's general problem thus becomes the 
decision problem for the class of all canonical systems of this "Thue type." 

This general problem could easily be proved recursively unsolvable if, instead 
of the pair of operations for each i of (I) ,  we merely had the first operation of 
each pair.3 In fact, by direct methods such as those of [3], we easily reduce the 
decision problem of an arbitrary "normal system" [3] to the decision problem 
of such a system of "semi-Thue type," the known recursive unsolvability of the 

Received October 26,1946. Presented to  the American 3Iathematical Society November 
2, 1946. 

Numbers in brackets refer to  the bibliography a t  the end of the paper. 
Null assertions, however, now being allowed. 

a That is, using the language of propositions instead of operations, if we merely had an 
implication where (1) has an equivalence. 



2 EMIL L. POST 

decision problem for the class of all normal systems then, no doubt, leading to 
the recursive unsolvability of the decision problem for the class of all semi- 
Thue systems. The crux of our method for handling the Thue systems them- 
selves is to find such a reduction of a known unsolvable problem to a system of 
semi-Thue type that when, for each i, the second of the two operations in (1) 
is added to the semi-Thue system, no new assertions are thereby added to the 
system. The known unsolvable problem is thus reduced to the resulting Thue 
system, as desired. Such a reduction turns out to be possible for a certain 
unsolvable problem arising in the theory of Turing machines. 

We shall adopt the following formulation of a Turing machine 171.~A two- 
way infinite linear tape is provided, ruled off into squares. Time is a one-way 
infinite sequence of discrete moments. A square will either be blank, or have 
a t  most one symbol printed upon it. At any moment the machine "scans" 
one of the squares. At such a moment the machine is capable of performing 
one of the following atomic acts: moving one square to the left, moving one square 
to the right, printing on the scanned square one of a given finite number of sym- 
bols S I ,  - . . , S, , or a blank. Following Turing, we take "printing" here to 
mean "overprinting," that is, the letter or blank printed replaces any letter that 
may have been on the scanned square. Printing a blank is then equivalent to 
erasing, when the scanned square is not blank. The machine, furthermore, is 
capable of assuming but a finite number of internal states, internal configura- 
tions or m-configurations with Turing, ql ,q2, . . . , q, . At any moment, the 
letter or blank on the scanned square together with the internal configuration 
of the machine determines the atomic act to be performed by the machine and 
the new internal configuration of the machine, or else, the machine then stops. 
At the initial moment a finite, possibly null, number of squares have S's printed 
on them, the machine scans a particular square and has a particular internal 
configuration. 

Symbolically, the machine may be given as follows. Let Sobe used to repre- 
sent a blank square. For the start of the action of the machine we need only 
consider the smallest unbroken piece of the tape containing the initially marked 
squares and the scanned square, replace these squares by their markings, or by 
Soif blank, and insert the symbol qi, of the initial internal configuration prior 
to the S of the scanned square to yield the representation 

SjlSj2.. .Sjk-,qilSjk...Six.  (2) 

A finite number of quadruplets of symbols of the three forms, 

9iS jL91 , qis jRql, qiSj s k q l  , (3) 

will then determine the behavior of the machine. Here, q; and S represent the 
internal configuration of the machine, and the symbol or blank on the scanned 

Apart from the Turing convention, discussed in the appendix, this differs from Turing's 
formulation of an automatic machine in the nature of the tape, and in Turing's use, in his 
standard form [7, p. 2401, of the composite operation "print and move" where we just have 
"move." A number of comparisons with [2] will occur to a reader of that note. 
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square, a t  any moment; L, R, or S k  the correspondingly determined atomic act 
of motion left, right, or printing of S k  ; q1 the determined new internal configura- 
tion of the machine. It is fundamental that the pairs qi , Sj of the several 
quadruplets are distinct, for they are to determine uniquely the consequent 
behavior of the machine. The machine will then continue acting determinis- 
tically from the initial moment on unless, and until, a qiSjis reached for which 
there is no quadruplet (3), in which case i t  will stop. 

We can now readily set up a semi-Thue system whose assertions will represent 
the successive states of the tape, and the relation of the machine thereto, as (2) 
represented these a t  the initial moment. However, for simplicity, the portion 
of the tape represented, while including the marked squares and the scanned 
square, need not now be the smallest such portion.6 Because of the particular 
needs of the semi-Thue form, we introduce a new symbol h. Each assertion of 
the semi-Thue system will then be in the form hPh with P free from h .  If A 
represents the string (2) of S's and one q, the initial assertion of the semi-Thue 
system will be hAh. For each quadruplet (3) corresponding to moving one 
square to the left, we introduce the operations 

PSnqiSi&produces PqIS,S,Q, n = 0, 1, . . . , m, (4) 

PhqiSjQ produces PhqlSoSiQ. (5) 

Note that (4) takes care of all cases where the scanned square is-not the left- 
most square of the part of the tape represented a t  the given moment, (5) where 
the scanned square is that leftmost square. Due to the form hPh of all asser- 
tions of the system, when (5) is applicable, the h of the premise thereof must be 
the leftmost of these two h's, so that P will be identified with the null string. 
The Soof the conclusion then takes care of the necessary extension of the por- 
tion of the tape represented when the motion is one square to the left of that 
portion. Likewise, for each quadruplet (3) corresponding to motion of one 
square to the right we introduce 

PqiSiS,Q produces PSIqISnQ,n = 0, 1, . . . , m, (6 )  

PqiS jhQ produces PSjqlSohQ; (7) 

while for each quadruplet (3) corresponding to the printing of S k  over the scanned 
square we have 

PqiSjQ produces P q I S k Q .  (8) 

Clearly both premise and conclusion of each operation thus introduced is of the 
form PBQ with fixed B, so that we do thus have a semi-Thue system. An 
obvious induction yields the form hPh with P free from h for each assertion. 
Likewise, each assertion has one and only one q therein. Finally, i t  is readily 

I t  could be made the smallest such portion by using more operations. There would 
then be a 1-1 correspondence between the intrinsic states of tape versus machine and the 
re~resentations thereof. 
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verified from the deterministic character of the Turing machine, and from the 
forms of the above operations, that at  most one of these operations is applicable 
to any string having no more than one occurrence of a q therein, and then in 
only one way. 

The unsolvable problem that is to yield the unsolvability of the problem of 
Thue would seem to be furnished by the following result of Turing's [7, p. 2483: 
"There can be no machine & which, when supplied with the S.D of an arbitrary 
machine %, will determine whether Em ever prints a given symbol (0say)." 
There are, however, difficulties in using this result as given due to peculiarities 
of Turing's development. (The matter is discussed in the appendix.) We 
therefore proceed independently of Turing as follows. 

We start with the known recursive unsolvability of the decision problem for 
the class of normal systems on two letters a, b.6 It suffices here to think of 
this problem as consisting of a class of questions, each question Q being sym- 
bolized by a string on a given finite set of letters. By methods such as those 
used by Turing in setting up his universal computing machine [7], we then set 
up the quadruplets (3) of a fixed Turing machine with certain letters & , Sz , 
. . .  , S ,  , and internal configurations ql , qz , . . . , q ,  , and give an effective 
method for translating each question Q into a Q' of form (2) to serve as the initial 
state of tape versus machine, the construction being such that the following is 
true. The answer to question Q is yes, or no, according as the constructed 
machine, when applied to Q', does, or does not, in the course of its operation 
print a certain fixed letter S, . This letter S, is not present in the Q' of any Q. 
Since such methods are fully exploited by Turing in [7], we do not give the details 
of this construction.' 

Now, given Q, form the semi-Thue system T' with initial assertion hQ'h, 
and operations (4)-(8) corresponding to this Turing machine. Then, the answer 
to Q is yes, or no, according as some assertion of T' involves the letter S, , 
or no assertion involves that letter. We now modify T' as follows. Delete 
all operations in T' such that the S ,  of the premise, the symbol on the scanned 
square of the Turing machine, is 8,. Since, when S, is first printed, i t  can 
appear so only as the Sk of (a), and thus would be the Si of a next operation, the 
deductive processes of the semi-Thue system will now stop the first time S,  
appears in an assertion. We now add operations which, in deterministic fashion, 
will erase all of this assertion except for the two h's and the q, while changing 
this q. For this purpose, we introduce two new "internal configurations" 

See [5, footnote 21. The specific form of this problem, however, need not be known by 
the reader for an understanding of the present argument. 

This work was carried through before the definitive study of Turing's paper [7], referred 
to in the appendix, was made. A3 a result, some differences of method appear. A minor 
difference is that where Turing uses the method of "marking" a sequence of symbols [7, p. 
2351 to distinguish i t ,  we introduce the eJect of movable physical markers; two, indeed, 
suffice. A major difference is that instead of the m-configuration functions of Turing's 
skeleton tables [7, p. 2361, we introduce a symbolism and technique based on the concept of a 
subset of directions of a given set of directions. Both differences were suggested by 121. 
They may, perhaps, better be exploited in a more general setting. 
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q 8 + ~and q8+, . We further alter the operations of T' by changing the qr of 

each operation (8) for which Skis Spto q E + ~  , and add the following operations: 


PS,qR+lQproduces PqR+iQ, n = 0, 1, . . a , m;n # p. (9) 


PhqR+,Q produces Phq~+2&. (10) 


PQR+~S,,& = 0, 1, . . (I1)
produces PqR+,&,n , m. 

Note that as a resuit of the previous changes, when S, first appears in an asser- 
tion, the q therein is qR+, . Operations (9) then serve to erase the S's of that 
assertion to the left of qE+l , (10) then changes qR+l to qE+2 , (11) erases the S's 
to the right of qE+2. Finally, therefore, the assertion becomes hqR+2h, to 
which no further operation is applicable. Call the resulting semi-Thue system 
T". Clearly, for T" i t  is also true that at  most one of its operations is applicable 
to any string having no more than one occurrence of a q therein, and then in only 
one way. I t  follows that the answer to Q is yes, or no, according as hqR+2h is, 
or is not, an assertion in T", the operations of T" operating one by one in deter- 
ministic fashion, and, in the former case, terminating in hqR+,h. 

The proof of the reducibility of our initial unsolvable problem to the problem 
of Thue essentially becomes the proof of the follouring two lemma^.^ By the 
inverse of an operation of the form PAQ produces PBQ we shall mean the opera- 
tion PBQ produces PAQ. Let T"' be the semi-Thue system with primitive 
assertion hqR+2h and operations the inverses of those of T". We then have: 

LEMMAI. The primitive assertion hqR+2h of T"' is an assertion of T" when, 
and only when, the primitive assertion hQ'h of T" is an assertion of T"'. 

Proof. D is a result of applying "PAQ produces PBQ" to C when, and only 
when, C is a result of applying the inverse operation "PBQ produces PAQ" 
to D. For both statements are equivalent to the existence of strings P and Q 
such that PAQ = C, PBQ = D. If, then, operations 0 1 ,  0 2 ,  . . . , On of T" 
lead from its primitive assertion hQ'h through assertions C1, CZ , . . . , Cn-1 
to the assertion h ~ ~ + ~ h ,  the inverses of these operations, all in T"', will in reverse 
order lead from hq R+zh, the primitive assertion of T"', through Cn-1 , . . , C) , 
C1 to hQ'h; and conversely. 

As a result of Lemma I ,  the answer to question Q is yes, or no, according as 
hQ1h is, or is not, an assertion of T"'. Note that while the initial assertion of 
T" depended on Q, T"' is the same for all Q's. Now let T be the Thue system 
obtained from the semi-Thue system T"' by adding to the latter the inverse of 
each of its operations. We then have: 

LEMMA11. The class of assertions of T is identical with the class of asser- 
tions of T"'. 

Proof. Each assertion of T"' is, of course, an assertion of T. For the con- 
verse, let operations O1 , 0 2  , . . . ,On of T lead from its primitive assertion hqR+2h, 
through assertions C1 , C2, . . . , Cn-1 , to  an assertion C of T. If n is zero, C 
is hqR+2h, and hence an assertion of T"'. Otherwise, note that the operations 
of T, being those of T"' and their inverses, are the combined operations of T"' 

8 These lemmas can be made more general. 
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and of T". Now we saw that no operation of T" is applicable to h ~ ~ + ~ h ,  the 
deductive processes of T" terminating in hqR+,h if leading thereto. Hence, op- 
eration 01must be in T"'. Assume 0,+1to be the first 0 not in T"', and hence 
in T". Since Om is in T"', its inverse is in T". As 0, operates on Cm-l(hqR+Zh, 
if rn is one) to yield C, , the inverse of Om is applicable to C, yielding Cm-l . 
That is, both the inverse of 0, , and 0,+1, are operations in T" applicable to 
C, , and yielding C,-1 and Cm+l (C, if m + 1 = n) respectively. Now, since 
the premise and conclusion of each operation in T, and the primitive assertion 
of T, have exactly one occurrence of a q therein, the same is true of every asser- 
tion of T. But we saw that a t  most m e  operatiofi of T" is applicable to a string 
with a single occurrence of a q therein, and then in only one way. It follows 
that 0,+1 is in fact that inverse of Om,  and hence Cm+l is C,-1 all over again. 
We may therefore delete operations 0, and 0,+1 from the given sequence of 
operations, and still have a sequence of operations leading from hq,+,h to C. 
By repeating this process, we finally obtain such a sequence of 0's with each 0 
in T"'. The arbitrary assertion C of T is therefore also an assertion of T"'.' 

Hence, hQ'h is an assertion of T"' when and only when it is an assertion of T. 
Finally, then, the answer to Q is yes, or no, according as hQ'h is, or is not, an 
assertion of the Thue system T. In terms of the language of Thue, we have 
then a fixed set of pairs of strings (A1, B1) , . . . , ( A ,  ,B,) leading to a defini-
tion of equivalence of strings such that the answer to Q is yes, or no, according 
as hQ1h is, or is not, equivalent to the fixed string hqR+2h.10 Certainly, then, a 
solution of the problem of Thue in its full generality would thus lead to a solu- 
tion of the "decision problem for the class of normal systems on a, b." By the 
use of Godel representations, the recursive unsolvability of the latter problem 
then easily leads to the recursive unsolvability of the problem of Thue. 

A few concluding remarks may be in order. The methods of [5], and of the 
present paper, do have something in common, a something we may call the 
method of the irrelevant modification. Once an unsolvable problem has been 
obtained by a reductio ad absurdum argument based on the definition of solva- 
bility, the usual method of proving a new problem unsolvable is to reduce a 
known unsolvable problem to this gi~en'~rob1em. In the method of the irrele- 
vant modification, the known unsolvable problem is reduced to a problem which 
on modification becomes the given problem, while that modification does not 
affect the answers to the individual questions. In [5] the modification is a sim- 
plification, the existence of a solution of a certain string equation subject to 

9 Briefly, then, the effect of operations of T" on deductive processes of T is to  unravel 
work done by operations of T"'. Note that while the deductive processes of T" give rise 
to a single sequence of assertions starting with hQ'h and terminating in h q ~ + z h ,if leading 
thereto, the deductive processes of T"' give rise to a tree of assertions, elements not neces- 
sarily distinct, stemming from hqR+rh,and containing the above sequence in reverse when 
that sequence terminates in h q ~ + * h .  

10 By the method of the next to the last paragraph of [5], this definition of equivalence 
could be transformed into a definition of equivalence for strings on the two letters a,  b. 
We have not paused to prove the recursive unsolvability of the resulting special case of the 
problem of Thue. 
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certain length conditions being equivalent to the mere existence of a solution of 
that string equation. In the present paper the 'modification is a complication, 
the answer to hQ1hbeing or not being an assertion of T"' being unaffected by 
adding to the operations of T"' their inverses. 

The writer has often felt that the multiplicity of equivalent formulations of 
recursiveness has been a deterrent to the general promulgation of this discipline. 
Yet, the writer's normal systems naturally lead to the unsolvable problem of 
[5], vihile the deterministic character of the Turing machine is basic to the above 
unsolvability proof. From this point of view, the several formulations of re- 
cursiveness are so many different instruments for tackling new unsolvability 
proofs. 

Though we have not paused to verify this formally, it seems rather obvious 
that when the problem of [5], and the problem of Thue, are translated via positive 
integers as suggested in [4], they become decision problems of recursively enumer- 
able sets of positive integers of the same degree of unsolvability as the comglete 
set K ,  a t  worst, with respect to many-one reducibility [4]. This indicates how 
far practice lags behind theory in this field. 

Appendix. The following critique of Turing's "computability" paper [7] 
concerns only pp. 230-248 thereof. We have checked the work through the 
construction of the "universal computing machine" in detail;" but the proofs 
of the two theorems in the section following are there given in outline only, and 
we have not supplied the formal details. W e  have therefore also left in intuitive 
form the proofs of the statements on recursiveness, and alternative procedures, we 
make below. 

Turing's definition of an arbitrary machine is not completely given in his 
paper, and, a t  a number of points, has to be inferred from his development. 
In the first instance his machine is a "computing machine" for obtaining the 
successive digits of a real number in dyadic notation, and, in that case, starts 
operating on a blank tape. Where explicitly stated, however, the machine may 

l1 One major correction is needed. To the instructions for conl(&, a)p. 244, add the line: 
None PD,R,Pa,R, R, R Q. This is needed to introduce the representation D of the 
blank scanned square when, as a t  the beginning of the action of the machine, or due to  
motion right beyond the rightmost previous point, the complete configuration ends with 
a q, and thus make the fmp of p. 244 correct. We may also note the following minor slips 
and misprints in pp. 230-248. Page 236, to the instructions for f(Q, 93,a) add the line: 
None L f(Q, 93, a);p. 240 and p. 241, the S.D should begin, but not end, with a semicolon; 
p. 242, omit the first D in (Cz); p. 243, last paragraph, add ":" to the first list of symbols; 
pp. 244-246, replace g by q ;  p. 245, in the instruction for mP, mP should be mil; p. 245, in the 
second instruction for aimz, replace the first R by L; p. 245, in the first instruction for 6@2, 
replace %@2by a$$. A reader of the paper will be helped by keeping in mind that the "ex- 
amples" of pages 236-239 are really parts of the table for the universal computing machine, 
and accomplish what they are said to accomplish not for all possible printings on the tape, 
but for certain ones that include printings arising from the action of the universal comput- 
ing machine. In particular, the tape has a printed on its first two squares, the occurrence 
of two consecutive blank squares insures all squares to the right thereof being blank, and, 
usually, symbols referred to are on "F-squares," and obey the convention of p. 235. 
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start operating on a tape previously marked. From Turing's frequent references 
to the beginning of the tape, and the way his universal computing machine 
treats motion left, we gather that, unlike our tape, this tape is a one-way infinite 
affair going right from an initial square. 

Primarily as a matter of practice, Turing makes his machines satisfy the 
following convention. Starting with the first square, alternate squares are 
called F-squares, the rest, E-squares. In  its action the machine then never 
directs motion left when i t  is scanning the initial square, never orders the erasure, 
or change, of a symbol on an F-square, never orders the printing of a symbol 
on a blank F-square if the previous F-square is blank and, in the case of a 
computing machine, never orders the printing of 0 or 1on an E-square. This 
convention is very useful in practice. However the actual performance, de- 
scribed below, of the universal computing machine, coupled with Turing's 
proof of the second of the two theorems referred to above, strongly suggests that 
Turing makes this convention part of the definition of an arbitrary machine. We 
shall distinguish between a Turing machine and a Turing convention-machine. 

By a uniform method of representation, Turing represents the set of instruc- 
tions, corresponding to our quadruplets,12 which determine the behavior of a 
machine by a single string on seven letters called the standard description (S.D) 
of the machine. With the letters replaced by numerals, the S.D of a machine is 
considered the arabic representation of a positive integer called the description 
number (D.N) of the machine. If our critique is correct, a machine is said to be 
circle-free if it is a Turing computing convention-machine which prints an infinite 
number of 0's and l's.13 And the two theorems of Turing's in question are 
really the following. There is no Turing convention-machine which, when 
supplied with an arbitrary positive integer n, will determine whether n is the 
D.N of a Turing computing convention-machine that is circle-free. There is no 
Turing convention-machine which, when supplied with an arbitrary positive 
integer n, will determine whether n is the D.N of a Turing computing conven- 
tion-machine that ever prints a given symbol (0 say) .I4 

In view of [S], these "no machine" results are no doubt equivalent to the re- 

l2 Our quadruplets are quintuplets in the Turing development. That is, where our 
standard instruction orders either a printing (overprinting) or motion, left or right, Tur- 
ing's standard instruction always orders a printing and a motion, right, left, or none. 
Turing's method has certain technical advantages, but complicates theory by introducing 
an irrelevant "printing" of a symbol each time that symbol is merely passed over. 

la "Genuinely prints," that is, a genuine printing being a printing in an empty square. 
See the previous footnote. 

l4 Turing in each case refers to  the S.D of a machine being supplied. But the proof of 
the first theorem, and the second theorem depends on the first, shows that it  is really a 
positive integer n that is supplied. Turing's proof of the second theorem is unusual in 
that while i t  uses the unsolvability result of the first theorem, it  does not "reduce" 141 
the problem of the first theorem to that of the second. In fact, the first problem is almost 
surely of "higher degree of unsolvability" [4] than the second, in which case it  could not be 
"reduced" to the second. Despite appearances, that second unsolvability proof, like the 
first, is a reductio ad absurdurn proof based on the definition of unsolvability, a t  the conclu- 
sion of which, the first result is used. 
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cursive unsolvability of the corresponding problems.15 But both of these prob- 
lems are infected by the spurious Turing convention. Actually, the set of n's 
which are D.N's of Turing computing machines as such is recursive, and hence 
the condition that n be a D.N offers no difficulty. But, while the set of n's 
which are not D.N1s of convention-machines is recursively enumerable, the com- 
plement of that set, that is, the set of n's which are D.N's of convention-machines, 
is not recursively enumerable. As a result, in both of the above problems, neither 
the set of n's for which the question posed has the answer yes, nor the set for 
which the answer is no, is recursively enumerable. 

This would remain true for the first problem even apart from the convention 
condition. But the second would then become that simplest type of unsolvable 
problem, the decision problem of a non-recursive recursively enumerable set of 
positive integers [4]. For the set of n's that are D.N1s of unrestricted Turing 
computing machines printing 0, say, is recursively enumerable, though its com- 
plement is not. The Turing convention therefore prevents the early appearance 
of this simplest type of unsolvable problem. 

I t  likewise prevents the use of Turing's second theorem in the above unsolva- 
bility proof of the problem of Thue. For in attempting to reduce the problem 
of Turing's second theorem to the problem of Thue, when an n leads to a Thue 
question for which the answer is yes, we would still have to determine whether n 
is the D.N of a Turing convention-machine before the answer to the question 
posed by n can be given, and that determination cannot be made recursively for 
arbitrary n. If, however, we could replace the Turing convention by a conven- 
tion that is recursive, the application to the problem of Thue could be made. 
An analysis of what Turing's universal computing machine accomplishes when 
applied to an arbitrary machine reveals that this can be done. 

The universal computing machine was designed so that when applied to the 
S.D of an arbitrary computing machine i t  would yield the same sequence of 0's 
and 1's as the computing machine as well as, and through the intervention of, 
the successive "complete configurationsn-representations of the successive 
states of tape versus machine-yielded by the computing machine. This it 
does for a Turing convention-machine.I6 For an arbitrary machine, we have to 
interpret a direction of motion left a t  a time when the initial square of the tape is 
scanned as meaning no motion." The universal computing machine will then 
yield again the correct complete configurations generated by the given machine. 
But the space sequence of 0's and 1's printed by the universal computing machine 
will now be identical with the time sequence of those printings of 0's and 1's by the 
given machine that are made in empty squares. If, now, instead of Turing's 

16 Our experience with proving that "normal unsolvability" in a sense implicit in [3] 
is equivalent to unsolvability in the sense of Church [I] ,  a t  least when the set of questions 
is recursive, suggests that a fair amount of additional labor would here be involved. That 
is probably our chief reason for making our proof of the recursive unsolvability of the prob- 
lem of Thue independent of Turing's development. 

'6 Granted the corrections given in footnote 11. 
l7 This modification of the concept of motion left is assumed throughout the rest of the 

discussion, with the exception of the last paragraph. 



10 EMIL L. POST 

convention we introduce the convention that the instructions defining the ma- 
chine never order the printing of a 0 or 1 except when the scanned square is 
empty, or 0, 1 respectively, and never order the erasure of a 0 or 1, Turing's 
arguments again can be carried through. And this "(0, 1) convention,') being 
recursive, allows the application to the problem of Thue to be made.'' Note 
that if a machine is in fact a Turing convention-machine, we could strike out any 
direction thereof which contradicts the (0, 1) convention without altering the 
behavior of the machine, and thus obtain a (0, 1) convention-machine. But 
a (0, 1) convention-machine need not satisfy t<he Turing convention. However, 
by replacing each internal-configuration qi of a machine by a pair qi , qi' to 
correspond to the scanned square being an F- or an E-square respectively, 
and modifying printing on an F-square to include testing the preceding F-square 
for being blank, we can obtain a "(q, q') convention" which is again recursive, 
and usable both for Turing's arguments and the problem of Thue, and has the 
property of, in a sense, being equivalent to the Turing convention. That is, 
every (q, q') convention-machine is a Turing convention-machine, while the 
directions of every Turing convention-machine can be recursively modified to 
yield a (q, q') convention-machine whose operation yields the same time sequence 
and spatial arrangement of printings and erasures as does the given machine, 
except for reprintings of the same symbol in a given square. 

These changes in the Turing convention, while preserving the general outline 
of Turing's development and a t  the same admitting of the application to the 
problem of Thue, would a t  least require a complete redoing of the formalwork 
of the proof of the second Turing theorem. On the other hand, very little 
added formal work would be required if the following changes are made in the 
Turing argument itself, though there would still remain the need of extending 
the equivalence proof of [8] to the concept of unsolvability. By using the above 
result on the performance of the universal computing machine when applied 
to the S.D of an arbitrary machine, we see that Turing's proof of his first theo- 
rem, whatever the formal counterpart thereof is, yields the following theorem. 
There is no Turing convention-machine which, when supplied with an arbitrary 
positive integer n, will determine whether n is the D.N of an arbitrary Turing 
machine that prints 0's and 1's in empty squares infinitely often. Now given 
an arbitrary positive integer n, if that n is the D.N of a Turing machine a, 
apply the universal computing machine to the S.D of 9Ti to obtain a machine 
%*. Since %* satisfies the Turing convention, whatever Turing's formal proof 
of his second theorem is, i t  will be usable intact in the present proof, and, via 
the new form of his first theorem, will yield the following usable result. There 
is no machine which, when supplied with an arbitrary positive integer n, will 

SO far as recursiveness is concerned, the distinction between the Turing convention 
and the (0, 1) convention is that the former concerns the history of the machine in action, 
the latter only the instructions defining the machine. Likewise, despite appearances, 
the later (q, q') convention. 
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determine whether n is the D.N of an arbitrary Turing machine that ever prints 
a given symbol (0 say) .Ig 

These alternative procedures assume that Turing's universal computing ma- 
chine is retained. However, in view of the above discussion, i t  seems to the 
writer that Turing's preoccupation with computable numbers has marred his 
entire development of the Turing machine. We therefore suggest a redevelop-
ment of the Turing machine based on the formulation given in the body of the 
present paper. This could easily include computable numbers by defining a 
computable sequence of 0's and 1's as the time sequence of printings of 0's and 
1's by an arbitrary Turing machine, provided there are an infinite number of 
such printings. By adding to Turing's complete configuration a representation 
of the act last performed, a few changes in Turing's method would yield a uni- 
versal computing machine which would transform such a time sequence into a 
space sequence. Turing's convention would be followed as a matter of useful 
practice in setting up this, and other, particular machines. But i t  would not 
infect the theory of arbitrary Turing machines. 
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l9 I t  is here assumed that the suggested extension of [8]includes a proof to the effect 
that the existence of an arbitrary Turing machine for solving a given problem is equivalent 
to the existence of a Turing convention-machine for solving that problem. 


