A UNIVERSAL TURING MACHINE WITH TWC INTERNAL STATES

Claude E. Shannon

INTRODUCTION

In a well-known paper1, A. M. Turing defined a class of computing
mchines now Mnown as Turing machines. We may think of a Turing mschine as
tomposed of three parts — g control element, g reading and writing head,
and an infinite tape. Ths tape 1s divided into a sequence of squares,
each of which can carry any symbol from a Finite alphabet. The reading head
¥ill at a given time scan one square of the tape. It can read the symbol
wrltten there and, under directions from the control element, can write g
Iew aymbol and alsc move one square to the right or left. The control ele-
ent 1s a device with g finite number of internal "states." At g given time,
e next operation of the machine is determineg by the current state of the
tontrol element and the symbol that is being read by the reading head. Thig
PPeration will consist of three parts; first the printing of a new symbol in
the present sqguare {(which may, of course, be the same as the symbol just
| 'ead}; second, the Passage of the contrel element to a new state (which may
|“£0 be the same as the Previous state); and third, movement of the reading
 ®ad one square to the right or left.

In operation, some finite portion of the tape 1 prepared with a
Etﬂrting sequence of symbols, the remainder of the tape being left blank
H.e,) registering a particular "blank" symbol). The reading head is placed
% a particular starting square and the mechine proceeds to compute in ac-
“rdance with its rules of operation. In Turing's original formulation
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alternate squares were reserved for the finsgl answer, ths others being Useq
for intermediate caleculations. This and other details of the originagl depy,
nition have been varied in later formulaticns of the thecry.

Turing showed that it is posaible to deasign a universal maching
which will be able to act like any particular Turing machine when supplieg
with a description of that machine. The description is placed cn the taps
of the universsl machine in accordance with a certain code, as is also the
starting sequence of the barticular machine., The wrliversal machine then
imitates the opsration of the particular machine. /

Our main result is to show that a universal Turing machine can he
constructed using one tape and bhaving only two internal states. It will gy,
be shown that it is impossible to do this with one internal state. Finalh

a construction is given for g unlversal Turing machine with only two tape
symbols. |
1

THE TWO-STATE UNIVERSAL TURING MACHINE
The method of construction is roughly as follows. @iven an arbi- ) |
trary Turing maschine A with an alphabet of m letters (symbols used on !
the tape, including the blank) and n internal states, we design a machine | !
B with twe internal states and an alphabet of at most imn + m  symbols. 5
Machine B will act essentially like machine A. At all points of the tap, |
except in the positicn cprosite the reading head and one ad Jacent position, |
the tape of B will resd the same as the tape of A at corresponding timesrE
in the calculation of the two machines. If A 1is chosen to be a universal /
Turing machine, then B will be a universal Turing machine. ;
Machine B modelas the behavior of machine A, but carries the !
Information of the internal 3tate of A via the symbols printed on the tape t
under the reading head and in the cell of the tape that the reading head of
A will next visit. The main problem is that of keeping this state inform-| -
tion up to date and under the reading head. When the reading head moves, (

(

the state information must be transferred to the next cell of the tape to
be visited using only two internal states in machine B. If the next stats
in machine A 1s to be (say) stats 17 {according to some arbitrary number-

ing system) this ig transferred in machine B by "bouncing" the resding E
head back and forth between the 0ld cell and the new one 17 times {actually
18 trips to the new cell and 17 back to the old cne). During this process ¢ .

the symbol printed in the new cell works through a kind of counting sequenwl
ending on a symbol corresponding to state 17, but also retaining informatiml
as to the symbol that was printed previously in this cell. The bouncing l B
process also returns the old cell back to cne of the elementary symbols
(which correspond one-to-one with the symbtols used by machine A), and in |
fact returns it to the particular elementary symbol that should be printed i
in that cell when the operation is complete.
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seq The formal constructicn of machine B isg gs foliows: Let the

- gymbol alphabet of machine A be A1 , AE’ vy Am’ and let the states bhe
| 5,, ««v, 8. In machine B we have I elementary symbols correspondin
3 ST’ 2 n €

X ' to the alphabet of the 2 machine, B1, BE’ veny Bm. We further define

d i Iew symhols corresponding to state synbol pairs orf machine A together
. ! with two new two-valusd indices. These syumbols we denote by Bi,j,x,y where
e [ 1=1,2, ..o, m (corresponding o the symbols), J=1,2, ..., (cor-

| responding to the states), x - or - (relating to whethep the cell or

the tape is transmitting op receiving information 1in the bouncing operation)

b: | and ¥ =R or I (relating to whether the cell bounces the control to the
aly| right or left).
iy The two states of machine B will be called o and 8. These

| two states are used for two purposes: First, on the initial step of the

: bouncing operation they carry intf'ormation to the next cell being visited as

to whether the old cell is to the right {a) or left (p) of the new one.

This 1s necessary for the new cell to bounce the control back in the broper

direction. After the initial step this informmation is retained in the new

cell by the symbol printed there (the last index ¥). Second, the states ¢
and B are used to g8ignal from the 0ld cell to the new one as to when the

¢ | bouncing operation is complete. Except for the initial step of bouncing,
state g will be carried to the new cell untii the end of the bouncing opers.

e] tlon when an o is carried over. This gignifies the end of this operation

and the new cell then Starts acting as g transmitter and controlling the

35( next step of the calculation.

" Machine B 1s described by telling what it does when it reads an
arbltrary symbol and is in an arbltrary state. What it does consists of three
parts: printing & new Symbol, changing tc a new state, and meving the reading

,el bead to right or 1ert. This operation table for machine B 1s as follows.

) Symbol ; state — symbol; state; direction
{ Bi; o —= B:L,1,-,R5 o; R (i -1, 2, <., m) (1)
Bis p — Bi,'l,-,L‘; o, L (i = 1, 2, -, m) (2)
5 (i =1, 2, s m
1,5 s g — B, .. s a; x j=1,2,-,n—1)(5)
Ll ux 1,(j+1),-,x (X =R, L
|t'E Goh s ™ ()
1,4 5 cor g —s B - ; B; b =2, ..., n L
Ji+,X i,(J J),+,X (_X =R, I, ] )
B
i 5 @or g — By; o X (L =1, 2, » m)
’1!+JX- i (X'=R, L ) (5}
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So far, these operations do not depend (except for the number of
symbols involved) on the cperation table for machine A. The next and last °
type of opersation is formulated in terms of the operation table of the ma- {

chine being modeled. Suppose that machine A has the operation formula ‘

(6) Ags 85—y Sy X
Then mechine B 1is defiined to have

. .8 . R '
(T) Bj—:.])":x) a_-*Bkaﬂs""E, a ’ L L

where 1f the upper letter (R) occurs in {6) the upper letters are used in
(7) and conversely.

To see how this system works, let us go through a cycle consisting
of one operation of machine A and the corresponding series of opesrations (
of machine B. >

Suppose that machine A 1is reading symbol A3 and 1s in state §
and suppose its operstlon table requires that it print AB’ go into state
Su and move Lo the right. Machine B will be reading (by inductive as-
sumption) symbol BB,?,—,X (whether x 13 R or L depends on precedingf
operations and is irrelevant to those which follow). Machine B will be |
in state «. By relation (7), machine B will print BB,h,+,R’ go into
state B, and move to the right. Suppose the cell on the right contains
A15 in machine A; in machine B the correaponding cell will contain Bly
on entgring this cell in state B, by relation (2) it prints Bl},l,—,L’ !
goes 1nto state «, and moves back to the left. This is the beginning of [
the tranafer of state information by the bouncing process. On entering the [
left cell, it regds B8,h,+,R and by relation {(4) prints B8,5,+,R’ goes
to state p and moves back to the right. There, by relation (3), it prints|
B13,2,-,L’ goes into state o« and returns to the left. Contimuing in this
manner, the process ls summarized in Table I.

The operations indicated complete the transfer of state informatid
to the right cell and execution of the order started in the left cell. The .
left cell has symbol B8 registersd (corresponding to A8 in machine A4)
and the right cell has symbol Bij,h,-,L registered, with the reading head
coming into that cell with internal state «. This brings us back to a gitw
ation similar to that assumed at the start, and arguing by inductlon we 589l
that machine B models the behavior of machine A. E

|

To get machine B started in a meanner ccrresponding to machine b
its initial tape is set up corresponding to the Initial tape of A (with ﬂ
replaced by Bi) except for the cell initially occupied by the reading hesd
If the initial state of machine A 1s Sj and the initial symbol in this
cell 1s Ai, the corresponding cell of the B tape has Bi,j,—,H(or L) ;
registered and its internal state 1s set at a.
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gymbol in left cell State Symbol in pight cell
Bj,—h_,x *N\
B -_‘-\-_-_——h-_
a < Bis
Bg,4,+,R
—_——— B
S U
o
Bg,3,0R —
—— b o

o
——!—_'_-‘__-‘—-‘-___
B8,2,+,R
= g —

) o
I
Bg 1,4.R
——_—'——'_‘ﬁ"i-———____ o
—_—

Table I

INFOSSIBILITY OF A ONE-STATE UNIVERSAL TURING MACHINE

It will now be shown that it is impossible to construct = universal
Turing machine using one tape and only one internal state.

Suppcse we have a machine satisfying these conditions. By register-
ing 2 suitable "deseription number" of finite length on part of the tape
(leaving the rest of the tape blank), and starting the reading head at & suit-
able point, the machine should compute any computable rumber, in particular
the computable irrational numbers, e.g., e, We will show that this is
Impossible,

According to Turing's original conception, J2o would be computed
in a machine by the machine printing the successive dlgits of W2 (gay, in
binary notation) on a specified sequence of cells of the tape (say, on alter-
hate cells, leaving the others for Iintermediste calculatiocns). The following
Proof assumes V2 to be calculated in such a form as this, although it will
be evident that medifications would take care of other reascnable interpreta-
tions of "calculating ¥2."

Since Vo2 is irrational, 1ts binary diglts do not, after any finite
Polnt, bacome perivdic. Hence If we can show that with & one—state machine
®lther (1) all but a finite number of the cells eventuslly have the same symbol
*eglstered, or (2) all but a finite muber of the cells change indefinitely,
" will have proved the desired result.
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Assume first a doubly inflnite tape — an Infinlte number of blanyg,
each side of the description number for J2. When the reading head enters g
blank cell 1t must elther stay there indefinitely or eventually mcve out eitmL
to right or left. Since there 1s only cne state, this behavlor does not de.
pend on previous history of the computation. In the first case, the reading
head will never get more than cone removed from the description number and aly
the tape except for a finlte segment will be constant at the blank symbol. [
If it moves out of a blank symbol to the left, elther the left singly infinim{
section of blank tape 1s not entered in the calculation and therefcre need:mf
be considered, or if it 1s entered, the reading head from that time onward WJ
times moving to the left leaving all these previously blank cells reglster-
ing the same symbol. Thus the tape becomes constant to the left of & flnite
segment and blank to the right of this segment and could not carry Ja. oA
aimilar situatlon arises if it emerges to the right from an originally blank a
cell. Hence the doubly infinite tape 1s no better than the singly 1nfinite
tape and we may assume from symmetry a singly infinite tape to the right of
the description mumber.

Now consider the following cperation. Place the reading head on
the first ¢ell of this infinite blank strip. The machine will then compute {
for a time and perhaps the reading heed will be transferred back out of this‘
strip toward the description number. If so, replace it on the first cell of
the now somewhat processed blank tape. If 1t returns agaln off the tape,
again replace 1t on the firat cell, etc. The number of tlmes 1t can be placed
on the first cell In this fashion will be called the reflectlon number of the
machine and denoted by R. This will be elther an Integsr 1, 2, 3, ...,
or .

Now conalder placing the reading head at its appropriate start for
the description number to compute J2. After a certain amount of computatice|
the reading head will perhaps emerge from the description mumber part of the
tape. Replace it on the last cell of the description number. Again after a
time 1t will possibly emerge. Contimue this process as long as possible. Tm(
mumber of times 1t emerges will either be an integer o, 1, 2, 3, ..., ©r a
This number, S, we call the reflection number for the J2 description.

If 8 is finite and R (possibly =) > 3, the reading head aftef
a finite time will be trapped in the part of the tape that originally con-
tained the description number. Only a finite amount of the blank tape will
have been changed and the machine will not have calculated Jo.

If both R and $ are infinite, the reading head will return in-
definitely to the description mumber part of the tape. The excursions into
the originally blank parts will elther be bounded or not. If they are boundé
only a finite amount of the blank tape will have been changed as in the pre-
ceding case. If the excursions are unbounded, all but a finite segment of
tape will be operated on by the reading head an unlimited number of times.

p—r
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gince there is only one state and & finite alphabet of tape symbols, the
gympol reglstered in a cell visited an unlimited nunber of times must either
come to a constant (the same for all these cells) or else change cyclically
gn infinite number of times. In the first case, all the originglly blank
tape Decomes constant and cannot represent ~2. In the second case all the
blank tape is continually changing and cannot be the computation of anything.

If R <8, the reading head eventually moves into the criginal
blank part of the tape and stays there. In this case 1t can be shown that
the symbols 1n the originally blank part become constant. For either it moves
to the right out of the first blank cell into the second blank cell at least
R timses, or not. If not the reading head is trapped in what was the first
blank cell after a finite time, and 211 but & finite amount of tape rsmains
constant at the blank symbol. If i1t does move out R times 1t will not re-
turn to the first originally blank cell since R is the refiectlion number
for blank tape. This first cell will then have registered the result of op-
erating on a blank 2R times (R coming in from the left and R from the
right). The second originally blank cell will eventually register the same
constant symbol, aince the same argument applies to it as to the first. In
each sase the machine works into the same tape (an infinite series of blanks)
and enters the same number of times (R). This exhausts the cages and com-
pletes the proof,

MODELING A TURING MACHINE WITH ONLY TWO TAPE SYMBOLS

It is also possible, as we will now show, to construct a machine,
C, which will act like any given Turing machine A and use only two symbols
1 and 0 on its tape, one of which, o say, 1s the symbol for a blank
square. Suppose, as before, a given machine A has m tape aymbols and n
internal states. Let £ be the smallest Integer such that m 1s less than
or egual to 21. Then we may set up an arblirary association of the m sym-
bols used by machine A with binary sequences of length £, letting however
the blank symbol of machine A correspond to the sequence of £ zeroes.
Basically, the machine € will operate with binary sequences; an elementary
Opératlon In machine A will correspond in machine C to stepping the read-
ing head to the right £ - 1 squares (storing the read information in 1its
Internal state) then stepping back to the left £ - 1 squares, wrliting the
proper new symbol as 1t goes, and finally moving either to the right or to
the left 2 sgquares to correspond to the motion of the reading head of
machine A. During this process, the state of machine A 1is also, of course,
carried in machine C. The change from the old state to the new state oc-
curs at the end of the reading operation.

The formel construction of machine ¢ Is as follows. Corresponding
to states 81, 52’ ceay Sn of machine A we define states T1’ T2, vy Tn

in
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machine C (these will occur when machine ¢ is at the beginning of an op-
eration, reading the first symbol in a binary sequence of length ¢£). TFor
gach of these Ti we define two states Tio and Ti1' If machine C is
in state Ti and reads symbol ©, it moves to the right and goes into
atate Tio' If it reads & 1, 1t moves to the right and goes Ilnto state
Ti?' Thus, after reading the [lirst symbol of a binary sequence, these two
states remember what that symbol was. For each of these there are again two
states Tioo’ TiOl and Tilo and T111. If the machine 1s in the state
TiO for example and reads the symbol 0 1t goes to the state Tioo and
gimilarly for the other cases. Thus these states remember the initlal state
and the first two symbols read In the reading process. This process of con-

structing states l1s continued for £ - 1 gtages, giving a total of {23 = 1)n
states. These states may be syxbolized by
Ti,x1,x X i=,2, ..., n Xj =0, 1; 8=0,1, ..., & =1,
2 s
If the machine 1s in one of these states (s < £ - 1) and reads 0 or 1,

the machine moves to the right and the 0 or 1 appears as a further index

on the state. When s = £ - 1, however, it 1s readlng the last binary symbol

in the group of #. The rules of cperation now depend on the specific rules
of machine A. Two new sets of states somewhat similar to the T states
above are defined, which correspond to writing rather than reading:

and L LxL

R
i,x1,x2,...,x 3

i,x],x

- I

A sequence iy X5 ---s Xy, X corresponds to a symbol of machine A.
Suppose that when machine A 1s reading this corresponding symbol and is in
state 1 it prints the symbol corresponding to the binary sequence

Yyr Fos «oes Tg_qs ¥y, 8gee8 toc state j and moves (say) right. Then we de-

fine machine € such that when in atate Ti . % x , and reading
ek e~ T AR bk G |

symbol x,, 1t goes into state R. ; Dprints y, and moves

J)Y1JY2;---:YE_1

to the left. 1In any of the states R (or Li

i,y1,Y2:---;YS :Y1,YE,---;Y5)’
machine ¢ writes Vg2 moving to the left and changes to state

L . B the b -
Ri,y1,y2,...,ys_1 (or i,Y1;Y2,---;Y3_1) y this process inery se

quence corresponding to the new symbol is written in place of the old binary
sequence. For the case 3= 1, £the wrlting of ¥, completes the writing

operation of the binary sequence., The remalning steps are concerned with

moving the reading head ¢ steps to the right or left according as the ma-
chine is in an R state or an I state. This is carried out by means of
s get of Uis and Vis (1 =1,2, ..., n; 8 =1,2, ..., - 1). In state
Rix1 the machine writes X,, moves to the right, and goes 1nto state UiY'

In each of the U states 1t continues to the right, printing nothing and
geling into the next higher indexXed U state until the last one is reached.

|

—— e ———
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Tms Uy, produces motion to the right and state Uigyp (8 <2 - 7).
PMnally Ui£-1 leads, after motion to the right, to Ti’ completing the
cycle. In a similar fashion, Lixi leads to motion to the left and state
Vi?; vis gives motion to the left and Vis+1
Viﬂ—T gives motion to the left and Ti'

The initial tape for machine C 1s, of course, that for machine A
with each symbol replaced by its corresponding binary sequence. If machine
A 18 started on a partlcular symbol, machine ¢ will be started on the
left-most binary symbol of the corresponding group; if machine A4 is
started 1n state Si’ C will be started in state Tij

Machine C has at most n{(1 + 2 + &% ... + 2 '1) =n(2” -1)T
states, similarly at most n(eB - 2) R states and n(2E - 2)1L =states,
and finally 2n(f - 1) U and V states. Thus altogether not more than
5n23 + n(2f - 7) states are required. Since 2ﬂ < 2m, this upper bound
on the number of states is less than 6mn + n(2f - 7), which in turn is
certainly less than 8mn.

The results we have obtained, together with other intuitive con-
slderations, supgest that 1t is possible to exchange symbola for states and
vice versa (within certain limits} without much change in the product. In
going to twe stetes, the product in the model given was increased by a factor
of about 8. In going to two symbols, the product was increased by a factor
of about 6, not more than 8. These "loss” factors of 6 and 8 are probably
in part due to our method of microscopic modeling — 1.e., each elementary
operation of machine A 1is modeled into machine B. If machine B were
designed merely to have the same calculating ability as A in the large,
1ts state-symbol product might be much more nearly the same. At any rate
the number of loglecal elements such as relays regulred for physical realiza-
tion will be a smell constant (about 2 for relays) times the hase two logar-
1thm of the state-symbol product, and the factor of 6 or & therefore implies
only a few more relays in such & realization.

An Interesting unsclved problem is to find the minimm possible
state-gymbol product for a universal Turing machine.

(s < ¢ -1} finally,
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