
SOME HISTORICAL NOTES
From: Stephen Wolfram, A New Kind of Science Notes for Chapter 10: Processes of Perception and Analysis
Section: Defining the Notion of Randomness
Page 1067
History [of defining randomness]. Randomness and unpredictability were discussed as general notions in antiquity in connection both with questions of free will (see page 1141) and games of chance. When probability theory emerged in the mid1600s it implicitly assumed sequences random in the sense of having limiting frequencies following its predictions. By the 1800s there was extensive debate about this, but in the early 1900s with the advent of statistical mechanics and measure theory the use of ensembles (see page 1024) turned discussions of probability away from issues of randomness in individual sequences. With the development of statistical hypothesis testing in the early 1900s various tests for randomness were proposed (see page 1089). Some× these were claimed to have some kind of general significance, but mostly they were just viewed as simple practical methods. In many fields outside of statistics, however, the idea persisted even to the 1990s that block frequencies (or flat frequency spectra) were somehow the only ultimate tests for randomness. In 1909 Emile Borel had formulated the notion of normal numbers (see page 914) whose infinite digit sequences contain all blocks with equal frequency. And in the 1920s Richard von Mises  attempting to capture the observed lack of systematically successful gambling schemes  suggested that randomness for individual infinite sequences could be defined in general by requiring that "collectives" consisting of elements appearing at positions specified by any procedure should show equal frequencies. To disallow procedures say specially set up to pick out all the infinite number of 1’s in a sequence Alonzo Church in 1940 suggested that only procedures corresponding to finite computations be considered. (Compare page 1025 on coarsegraining in thermodynamics.) Starting in the late 1940s the development of information theory began to suggest connections between randomness and inability to compress data, but emphasis on p Log[p] measures of information content (see page 1075) reinforced the idea that block frequencies are the only real criterion for randomness. In the early 1960s, however, the notion of algorithmic randomness (see note above) was introduced by Gregory Chaitin, Andrei Kolmogorov and Ray Solomonoff. And unlike earlier proposals the consequences of this definition seemed to show remarkable consistency (in 1966 for example Per MartinLöf proved that in effect it covered all possible statistical tests)  so that by the early 1990s it had become generally accepted as the appropriate ultimate definition of randomness. In the 1980s, however, work on cryptography had led to the study of some slightly weaker definitions of randomness based on inability to do cryptanalysis or make predictions with polynomialtime computations (see page 1094). But quite what the relationship of any of these definitions might be to natural science or everyday experience was never much discussed. Note that definitions of randomness given in dictionaries tend to emphasize lack of aim or purpose, in effect following the common legal approach of looking at underlying intentions (or say at physical construction of dice) rather than trying to tell if things are random from their observed behavior.
Stephen Wolfram, A New Kind of Science (Wolfram Media, 2002), page 1067.
© 2002, Stephen Wolfram, LLC

