# Search NKS | Online

21 - 22 of 22 for Transpose

To next order the result is
s[d] r d (1 - RicciScalar r 2 /(6(d + 2)) + (5 RicciScalar 2 - 3 RiemannNorm + 8 RicciNorm - 18 Laplacian[RicciScalar])r 4 /(360 (d + 2)(d + 4)) + …)
where the new quantities involved are
RicciNorm = Norm[RicciTensor, {g, g}]
RiemannNorm = Norm[Riemann, {g, g, g, Inverse[g]}]
Norm[t_, gl_] := Tr[Flatten[t Dual[t, gl]]]
Dual[t_, gl_]:= Fold[Transpose[#1 .

Correspondence systems
Given a list of pairs p with {u, v} = Transpose[p] the constraint to be satisfied is
StringJoin[u 〚 s 〛 ] StringJoin[v 〚 s 〛 ]
Thus for example p = {{"ABB", "B"}, {"B", "BA"}, {"A", "B"}} has shortest solution s = {2, 3, 2, 2, 3, 2, 1, 1} .