Field equations
Any equation of the form
∂ttu[t, x] ∂xxu[t, x] + f[u[t, x]]\!\(\*SubscriptBox[\(\[PartialD]\),\(tt\)]\)u[t,x]==\!\(\*SubscriptBox[\(\[PartialD]\),\(xx\)]\)u[t,x]+f[u[t,x]]
can be thought of as a classical field equation for a scalar field. Defining
v[u] = -Integrate[f[u], u]v[u] = -Integrate[f[u], u]
the field then has Lagrangian density
((∂tu)2 - (∂xu)2)/2 - v[u](\!\(\*SuperscriptBox[\(\!\(\*SubscriptBox[\((\[PartialD]\),\(t\)]\)u)\),\(2\)]\)-\!\(\*SuperscriptBox[\(\!\(\*SubscriptBox[\((\[PartialD]\),\(x\)]\)u)\),\(2\)]\))/2-v[u]
and conserves the Hamiltonian (energy function)
Integrate[((∂tu)2 + (∂tu)2)/2 + v[u], {x, -∞, ∞}]Integrate[(\!\(\*SuperscriptBox[\((\!\(\*SubscriptBox[\(\[PartialD]\),\(t\)]\)u)\),\(2\)]\) + \!\(\*SuperscriptBox[\(\!\(\*SubscriptBox[\((\[PartialD]\),\(x\)]\)u)\),\(2\)]\))/2 + v[u], {x, -∞, ∞}]
With the choice for f[u]f[u]
made here (with a ≥ 0a ≥ 0
), v[u]v[u]
is bounded from below, and as a result it follows that no singularities ever occur in u[t, x]u[t, x]
.