Showing Web View For Page 3 | Show full page with images

across a vast range of physical, biological and other systems we are continually confronted with what seems to be immense complexity. And indeed throughout most of history it has been taken almost for granted that such complexity—being so vastly greater than in the works of humans—could only be the work of a supernatural being.

But my discovery that many very simple programs produce great complexity immediately suggests a rather different explanation. For all it takes is that systems in nature operate like typical programs and then it follows that their behavior will often be complex. And the reason that such complexity is not usually seen in human artifacts is just that in building these we tend in effect to use programs that are specially chosen to give only behavior simple enough for us to be able to see that it will achieve the purposes we want.

One might have thought that with all their successes over the past few centuries the existing sciences would long ago have managed to address the issue of complexity. But in fact they have not. And indeed for the most part they have specifically defined their scope in order to avoid direct contact with it. For while their basic idea of describing behavior in terms of mathematical equations works well in cases like planetary motion where the behavior is fairly simple, it almost inevitably fails whenever the behavior is more complex. And more or less the same is true of descriptions based on ideas like natural selection in biology. But by thinking in terms of programs the new kind of science that I develop in this book is for the first time able to make meaningful statements about even immensely complex behavior.

In the existing sciences much of the emphasis over the past century or so has been on breaking systems down to find their underlying parts, then trying to analyze these parts in as much detail as possible. And particularly in physics this approach has been sufficiently successful that the basic components of everyday systems are by now completely known. But just how these components act together to produce even some of the most obvious features of the overall behavior we see has in the past remained an almost complete mystery. Within the framework of the new kind of science that I develop in this book, however, it is finally possible to address such a question.

Exportable Images for This Page:

From Stephen Wolfram: A New Kind of Science [citation]