# Search NKS | Online

1 - 2 of 2 for FresnelS

Intrinsically defined curves
With curvature given by a function f[s] of the arc length s , explicit coordinates {x[s], y[s]} of points are obtained from (compare page 1048 )
NDSolve[{x'[s] Cos[ θ [s]], y'[s] Sin[ θ [s]], θ '[s] f[s], x[0] y[0] θ [0] 0}, {x, y, θ }, {s, 0, s max }]
For various choices of f[s] , formulas for {x[s], y[s]} can be found using DSolve :
f[s] = 1: {Sin[ θ ], Cos[ θ ]}
f[s] = s: {FresnelS[ θ ], FresnelC[ θ ]}
f[s] = 1/ √ s : √ θ {Sin[ √ θ ], Cos[ √ θ ]}
f[s] = 1/s: θ {Cos[Log[ θ ]], Sin[Log[ θ ]]}
f[s] = 1/s 2 : θ {Sin[1/ θ ], Cos[1/ θ ]}
f[s] = s n : result involves Gamma[1/n, ± θ n/n ]
f[s] = Sin[s] : result involves Integrate[Sin[Sin[ θ ]], θ ] , expressible in terms of generalized Kampé de Fériet hypergeometric functions of two variables.
When s max ∞ , f[s] = a s Sin[s] yields 2D shapes that are basically nested, with pieces overlapping for Abs[a] < 1 .
… Cases related to f[s] = s Sin[s] were studied by Alfred Gray around 1992 using Mathematica.

[History of] exact solutions
Some notable cases where closed-form analytical results have been found in terms of standard mathematical functions include: quadratic equations (~2000 BC) ( Sqrt ); cubic, quartic equations (1530s) ( x 1/n ); 2-body problem (1687) ( Cos ); catenary (1690) ( Cosh ); brachistochrone (1696) ( Sin ); spinning top (1849; 1888; 1888) ( JacobiSN ; WeierstrassP ; hyperelliptic functions); quintic equations (1858) ( EllipticTheta ); half-plane diffraction (1896) ( FresnelC ); Mie scattering (1908) ( BesselJ , BesselY , LegendreP ); Einstein equations (Schwarzschild (1916), Reissner–Nordström (1916), Kerr (1963) solutions) (rational and trigonometric functions); quantum hydrogen atom and harmonic oscillator (1927) ( LaguerreL , HermiteH ); 2D Ising model (1944) ( Sinh , EllipticK ); various Feynman diagrams (1960s-1980s) ( PolyLog ); KdV equation (1967) ( Sech etc.); Toda lattice (1967) ( Sech ); six-vertex spin model (1967) ( Sinh integrals); Calogero–Moser model (1971) ( Hypergeometric1F1 ); Yang–Mills instantons (1975) (rational functions); hard-hexagon spin model (1979) ( EllipticTheta ); additive cellular automata (1984) ( MultiplicativeOrder ); Seiberg–Witten supersymmetric theory (1994) ( Hypergeometric2F1 ).