Generating functions [for nested patterns]
A convenient algebraic way to describe a sequence of numbers a[n]a[n]
is to give a generating function Sum[a[n] xn, {n, 0, ∞}]Sum[a[n]\!\(\*SuperscriptBox[\(x\),\(n\)]\),{n,0,\[Infinity]}]
. 1/(1 - x)1/(1 - x)
thus corresponds to the constant sequence and 1/(1 - x - x2)1/(1-x-\!\(\*SuperscriptBox[\(x\),\(2\)]\))
to the Fibonacci sequence (see page 890). A 2D array can be described by Sum[a[t, n] xn yt, {n, -∞, ∞}, {t, -∞, ∞}]Sum[a[t, n]\!\(\*SuperscriptBox[\(x\),\(n\)]\)\!\(\*SuperscriptBox[\(y\),\(t\)]\),{n,-∞,∞},{t,-∞,∞}]
. The array for rule 60 is then 1/(1- (1 + x) y)1/(1- (1 + x) y)
, for rule 90 1/(1 - (1/x + x) y)1/(1 - (1/x + x) y)
, for rule 150 1/(1 - (1/x + 1 + x) y)1/(1 - (1/x + 1 + x) y)
and for second-order reversible rule 150 (see page 439) 1/(1 - (1/x + 1 + x) y - y2)1/(1-(1/x+1+x)y-\!\(\*SuperscriptBox[\(y\),\(2\)]\))
. Any rational function is the generating function for some additive cellular automaton.