Notes

Chapter 3: The World of Simple Programs

Section 5: Substitution Systems


Lucas numbers

Lucas numbers Lucas[n]

Lucas[n] satisfy the same recurrence relation f[n_] := f[n - 1] + f[n - 2]
f[n_] := f[n - 1] + f[n - 2]
as Fibonacci numbers, but with the initial conditions f[1] = 1
f[1] = 1
; f[2] = 3
f[2] = 3
. Among the relations satisfied by Lucas numbers are:

Lucas[n_] := Fibonacci[n - 1] + Fibonacci[n + 1]

Lucas[n_] := Fibonacci[n - 1] + Fibonacci[n + 1]

GoldenRation (Lucas[n] + Fibonacci[n] 5)/2

\!\(\*SuperscriptBox[\(GoldenRatio\),\(n\)]\)==(Lucas[n]+Fibonacci[n]\!\(\*SqrtBox[\(5\)]\))/2



Image Source Notebooks:

From Stephen Wolfram: A New Kind of Science [citation]